Haofei Zhang
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haofei Zhang.
Environmental Science & Technology | 2012
Ying Hsuan Lin; Zhenfa Zhang; Kenneth S. Docherty; Haofei Zhang; Sri Hapsari Budisulistiorini; Caitlin L. Rubitschun; Stephanie L. Shaw; Eladio M. Knipping; Eric S. Edgerton; Tadeusz E. Kleindienst; Avram Gold; Jason D. Surratt
Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for β-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.
Environmental Science & Technology | 2012
Haofei Zhang; David R. Worton; Michael Lewandowski; John Ortega; Caitlin L. Rubitschun; Jeong Hoo Park; Kasper Kristensen; Pedro Campuzano-Jost; Douglas A. Day; Jose L. Jimenez; Mohammed Jaoui; John H. Offenberg; Tadeusz E. Kleindienst; J. B. Gilman; William C. Kuster; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Amanda A. Frossard; Lynn M. Russell; Lisa Kaser; Werner Jud; Armin Hansel; Luca Cappellin; Thomas Karl; Marianne Glasius; Alex Guenther; Allen H. Goldstein; John H. Seinfeld; Avram Gold
2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.
Environmental Chemistry | 2012
Haofei Zhang; Ying Hsuan Lin; Zhenfa Zhang; Xiaolu Zhang; Stephanie L. Shaw; Eladio M. Knipping; Rodney J. Weber; Avram Gold; Richard M. Kamens; Jason D. Surratt
Environmental context Secondary organic aerosols formed from the oxidation of volatile organic compounds make a significant contribution to atmospheric particulate matter, which in turn affects both global climate change and human health. We investigate the mechanisms of formation and the chemical properties of secondary organic aerosols derived from isoprene, the most abundant non-methane-based, volatile organic compound emitted into the Earth’s atmosphere. However, the exact manner in which these aerosols are formed, and how they are affected by environmental conditions, remains unclear. Abstract Secondary organic aerosol (SOA) formation from the photooxidation of methacrolein (MACR) was examined in a dual outdoor smog chamber under varied initial nitric oxide (NO) levels, relative humidities (RHs) and seed aerosol acidities. Aerosol sizing measurements and off-line chemical analyses by gas chromatography/mass spectrometry and ultra performance liquid chromatography/electrospray ionisation high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS) were used to characterise MACR SOA formation. Results indicate that both SOA mass and chemical composition largely depend on the initial MACR/NO ratio and RH conditions. Specifically, at lower initial NO levels (MACR/NO = ~2.7) more substantial SOA is formed under dry conditions (5–20 % RH) compared to wet conditions (30–80 % RH). However, at higher initial NO levels (MACR/NO = ~0.9), the maximum SOA formation was marginally higher under wet conditions. Furthermore, UPLC/ESI-HR-Q-TOFMS data suggest that most particle-phase oligomers, which have been previously observed to form from the oxidation of methacryloylperoxynitrate, were enhanced under dry conditions. In addition to 2-methylglyceric acid and organosulfates derived from MACR oxidation, a nitrogen-containing organic tracer compound was found to form substantially in both chamber-generated and ambient aerosol samples collected from downtown Atlanta, GA, during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Moreover, increasing aerosol acidity because of additional sulfuric acid appears to have a negligible effect on both SOA mass and most SOA constituents. Nevertheless, increased RH and aerosol acidity were both observed to enhance organosulfate formation; however, elevating RH mediates organosulfate formation, suggesting that wet sulfate aerosols are necessary to form organosulfates in atmospheric aerosols.
Environmental Science and Technology Letters | 2014
Haofei Zhang; Zhenfa Zhang; Tianqu Cui; Ying Hsuan Lin; Neil A. Bhathela; John Ortega; David R. Worton; Allen H. Goldstein; Alex Guenther; Jose L. Jimenez; Avram Gold; Jason D. Surratt
Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to the level of isoprene, the level of MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide), was synthesized and tentatively proposed to explain this enhancement. In this study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosol. Major SOA constituents, 2,3-dihydroxyisopentanol and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosol collected from the BEACHON-RoMBAS field campaign during the summer of 2011, where MBO emissions are substantial. Our results support the idea that epoxides are potential products of MBO photooxidation leading to the formation of atmospheric SOA and suggest that reactive uptake of epoxides may explain acid enhancement of SOA observed from other biogenic hydrocarbons.
Environmental Science & Technology | 2015
David R. Worton; Haofei Zhang; Gabriel Isaacman-VanWertz; Arthur W. H. Chan; Kevin R. Wilson; Allen H. Goldstein
Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.
Journal of Geophysical Research | 2015
Greg T. Drozd; David R. Worton; Christoph Aeppli; Christopher M. Reddy; Haofei Zhang; Evan A. Variano; Allen H. Goldstein
Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate- and semi-volatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultra-violet time of flight mass spectrometry (GC-VUV-HR-ToFMS) . All hydrocarbons with 10 to 30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ∼50% of total oil mass.[Worton et al.] Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind tunnel measurements. Using this model we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable sub-surface transport of oil. This article is protected by copyright. All rights reserved.
Journal of Physical Chemistry A | 2014
Theodora Nah; Haofei Zhang; David R. Worton; Christopher R. Ruehl; Benjamin B. Kirk; Allen H. Goldstein; Stephen R. Leone; Kevin R. Wilson
The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified and quantified using two-dimensional gas chromatography-mass spectrometry. The reactions are measured at low and high [O2] (∼1% vs 10% [O2]) to understand the roles of hydroxyalkyl and hydroxyperoxy radical intermediates in product formation. A key reaction step is OH addition to a C═C double bond to form a hydroxyalkyl radical. In addition, allylic alkyl radicals, formed from H atom abstraction reactions by hydroxyalkyl or OH radicals play important roles in the chemistry of product formation. Functionalization products dominate the squalene reaction at ∼1% [O2], with the total abundance of observed functionalization products being approximately equal to the fragmentation products at 10% [O2]. The large abundance of squalene fragmentation products at 10% [O2] is attributed to the formation and dissociation of tertiary hydroxyalkoxy radical intermediates. For linolenic acid aerosol, the formation of functionalization products dominates the reaction at both ∼1% and 10% [O2], suggesting that the formation and dissociation of secondary hydroxyalkoxy radicals are minor reaction channels for linear molecules. The distribution of linolenic acid functionalization products depends upon [O2], indicating that O2 controls the reaction pathways of the secondary hydroxyalkyl radical. For both reactions, alcohols are formed in favor of carbonyl functional groups, suggesting that there are some key differences between heterogeneous reactions involving allylic radical intermediates and those reactions of OH radicals with simple saturated hydrocarbons.
Environmental Chemistry | 2013
Yang Zhou; Elias P. Rosen; Haofei Zhang; Weruka Rattanavaraha; Wenxing Wang; Richard M. Kamens
Environmental context Nucleation, a fundamental step in atmospheric new-particle formation, is a significant source of atmospheric aerosols. Most laboratory experiments investigate H2SO4 nucleation based on indoor chambers or flow tube reactors, and find discrepancies with field observations. Here a large outdoor smog chamber is used to study the relationship between SO2 and nucleation rates, and demonstrate the importance of aqueous phase oxidation of SO2 by H2O2 and other oxidants. Abstract Particle formation under different initial ambient background conditions was simulated in a dual outdoor smog chamber for the SO2 and O3–SO2 systems with and without sunlight, as well as a propylene–NOx–SO2–sunlight system. An exponential power of 1.37 between nucleation rates at 1nm (J1) and SO2 gas phase concentrations was obtained for the SO2–sunlight system and a minimum of 0.45ppbSO2 is required by this relationship to initiate nucleation (J1 is equal to 1cm–3s–1). An investigation of the O3–SO2–sunlight/dark system showed that the presence of O3 contributed to the particle nucleation and growth at night; however, it only enhanced the particle growth in the daytime when H2SO4 photochemistry was present. In the presence of an OH• scavenger, the O3–SO2 system did not show particle nucleation, suggesting that the scavenger cut off this pathway of SO2 oxidation. A lower nucleation rate and higher particle grow rate were also observed for SO2 oxidation in the presence of propylene and NOx. However a higher SO2 decay rate was obtained for the propylene system especially under high relative humidity, which was not observed in the O3–SO2 system. This suggests that aqueous phase oxidation of SO2 from H2O2, RO2• and other oxidants produced in the propylene–NOx system contribute to the particle growth.
Environmental Science & Technology | 2015
Haofei Zhang; David R. Worton; Steve Shen; Theodora Nah; Gabriel Isaacman-VanWertz; Kevin R. Wilson; Allen H. Goldstein
Traditional descriptions of gas-particle partitioning of organic aerosols (OA) rely solely on thermodynamic properties (e.g., volatility). Under realistic conditions where phase partitioning is dynamic rather than static, the transformation of OA involves the interplay of multiphase partitioning with oxidative aging. A key challenge remains in quantifying the fundamental time scales for evaporation and oxidation of semivolatile OA. In this paper, we use isomer-resolved product measurements of a series of normal-alkanes (C18, C20, C22, and C24) to distinguish between gas-phase and heterogeneous oxidation products formed by reaction with hydroxyl radicals (OH). The product isomer distributions when combined with kinetics measurements of evaporation and oxidation enable a quantitative description of the multiphase time scales to be simulated using a single-particle kinetic model. Multiphase partitioning and oxidative transformation of semivolatile normal-alkanes under laboratory conditions is largely controlled by the particle phase state, since the time scales of heterogeneous oxidation and evaporation are found to occur on competing time scales (on the order of 10(-1) h). This is in contrast to atmospheric conditions where heterogeneous oxidation time scales are expected to be much longer (on the order of 10(2) h), with gas-phase oxidation being the dominant process regardless of the evaporation kinetics. Our results demonstrate the dynamic nature of OA multiphase partitioning and oxidative aging and reveal that the fundamental time scales of these processes are crucial for reliably extending laboratory measurements of OA phase partitioning and aging to the atmosphere.
Journal of Atmospheric Chemistry | 2012
Haofei Zhang; Richard M. Kamens
Isoprene peroxy radical isomerizations (1,5- and 1,6-H shifts) have recently been proposed as important pathways regenerating and recycling HOx (OH + HO2) in the atmosphere under low-NOx conditions (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935–5939 2009; da Silva et al. Environ. Sci. Technol. 44:250–256 2010). Evaluation and comparison of the isoprene peroxy radical isomerization mechanisms from recent studies have been performed against isoprene-NOx experiments conducted in the UNC dual outdoor smog chambers. Five different kinetic mechanisms were tested in this study, including the original Master Chemical Mechanism (MCM) v3.1; two modified MCM mechanisms both implementing isoprene peroxy radical isomerization reactions but with different rate coefficients; the Carbon Bond 6 (CB6) mechanism; and the ISO-UNC mechanism. Sensitivity analyses of the unsaturated hydroxyperoxy aldehydes (HPALDs) reaction mechanisms under fast isomerization have also been performed. The results indicate that the fast isomerization mechanism and the mechanisms with high OH yields from HPALDs photolysis both significantly enhance HOx estimates with increasing isoprene/NOx ratios. However, O3 predictions, as well the isoprene decay rates are substantially overestimated. Our results suggest that given the current state of our knowledge, it is difficult to improve both HOx levels and maintain reasonable O3 simulations using the Peeters et al. (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935–5939 2009) mechanism.