Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haojie Jin is active.

Publication


Featured researches published by Haojie Jin.


Molecular Cancer | 2017

STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4

Hui Wang; Xisong Huo; Xin-Rong Yang; Jia He; Lijun Cheng; Na Wang; Xuan Deng; Haojie Jin; Ning Wang; Cun Wang; Fangyu Zhao; Jing-Yuan Fang; Ming Yao; Jia Fan; Wenxin Qin

BackgroundSeveral of the thousands of human long noncoding RNAs (lncRNAs) have been functionally characterized, yet their potential involvement in hepatocellular carcinoma (HCC) remains poorly understood.MethodsLncRNA-HOXD-AS1 was identified by microarray and validated by real-time PCR. The clinicopathological significance of HOXD-AS1 was analyzed by Kaplan-Meier method. Chromatin immunoprecipitation was conducted to examine the mechanism of HOXD-AS1 upregulation. The role of HOXD-AS1 in HCC cells was assessed both in vitro and in vivo. ceRNA function of HOXD-AS1 was evaluated by RNA immunoprecipitation and biotin-coupled miRNA pull down assays.ResultsIn this study, we found that HOXD-AS1 was significantly upregulated in HCC tissues. Clinical investigation demonstrated high expression level of HOXD-AS1 was associated with poor prognosis and high tumor node metastasis stage of HCC patients, and was an independent risk factor for survival. Moreover, our results revealed that STAT3 could specifically interact with the promoter of HOXD-AS1 and activate HOXD-AS1 transcription. Knockdown of HOXD-AS1 significantly inhibited migration and invasion of HCC cells in vitro and distant lung metastasis in vivo. Additionally, HOXD-AS1 was enriched in the cytoplasm, and shared miRNA response elements with SOX4. Overexpression of HOXD-AS1 competitively bound to miR-130a-3p that prevented SOX4 from miRNA-mediated degradation, thus activated the expression of EZH2 and MMP2 and facilitated HCC metastasis.ConclusionsIn summary, HOXD-AS1 is a prognostic marker for HCC patients and it may play a pro-metastatic role in hepatocarcinogenesis.


ACS Applied Materials & Interfaces | 2017

Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery

Haiqiu Wu; Haojie Jin; Cun Wang; Zihao Zhang; Haoyu Ruan; Luyan Sun; Chen Yang; Yongjing Li; Wenxin Qin; Changchun Wang

Combination chemotherapy has been proposed to achieve synergistic effect and minimize drug dose for cancer treatment in clinic application. In this article, the stimuli-responsive polymeric nanogels (<100 nm in size) based on poly(acrylic acid) were designed as codelivery system for doxorubicin and cisplatin to overcome drug resistance. By chelation, electrostatic interaction, and π-π stacking interactions, the nanogels could encapsulate doxorubicin and cisplatin with designed ratio and high capacity. Compared with free drugs, the nanogels could deliver more drugs into MCF-7/ADR cells. Significant accumulation in tumor tissues was observed in the biodistribution experiments. The in vitro antitumor studies demonstrated the superior cell-killing activity of the nanogel drug delivery system with a combination index of 0.84, which indicated the great synergistic effect. All the antitumor experimental data revealed that the combination therapy was effective for the multidrug-resistant MCF-7/ADR tumor with reduced side effects.


Theranostics | 2016

Gas6/Axl Axis Contributes to Chemoresistance and Metastasis in Breast Cancer through Akt/GSK-3β/β-catenin Signaling

Cun Wang; Haojie Jin; Ning Wang; Shaohua Fan; Yanyan Wang; Yurong Zhang; Lin Wei; Xuemei Tao; Dishui Gu; Fangyu Zhao; Jing-Yuan Fang; Ming Yao; Wenxin Qin

Chemoresistance in breast cancer has been of great interest in past studies. However, the development of rational therapeutic strategies targeting chemoresistant cells is still a challenge in clinical oncology. By integrating data from global differences of gene expression and phospho-receptor tyrosine kinases between sensitive parental cells (MCF-7) and doxorubicin-resistant cells (MCF-7/ADR), we identified Axl as a potential target for chemoresistance and metastasis in multidrug resistant breast cancer cells. We analyzed Axl expression in 57 breast cancer cell lines and detected a dramatic increase in its expression level in mesenchymal breast cancer cell lines. Axl silencing suppressed invasive and metastatic potentials of chemoresistant breast cancer cells as well as increased elimination of cancer cells when combined with doxorubicin. Furthermore, in preclinical assays, an Axl inhibitor R428 showed increased cell death upon doxorubicin treatment. Additionally, using phospho-kinase array based proteomic analysis, we identified that Akt/GSK-3β/β-catenin cascade was responsible for Axl-induced cell invasion. Nuclear translocation of β-catenin then induced transcriptional upregulation of ZEB1, which in turn regulated DNA damage repair and doxorubicin-resistance in breast cancer cells. Most importantly, Axl was correlated with its downstream targets in tumor samples and was associated with poor prognosis in breast cancer patients. These results demonstrate that Gas6/Axl axis confers aggressiveness in breast cancer and may represent a therapeutic target for chemoresistance and metastasis.


Carcinogenesis | 2015

LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway

Qin Luo; Cun Wang; Guangzhi Jin; Dishui Gu; Ning Wang; Jin Song; Haojie Jin; Fangyuan Hu; Yurong Zhang; Tianxiang Ge; Xisong Huo; Wei Chu; Huiqun Shu; Jing-Yuan Fang; Ming Yao; Jianren Gu; Wenming Cong; Wenxin Qin

Hepatocellular carcinoma (HCC) is one of the leading causes for cancer related mortality worldwide. Poor prognosis of HCC patients is mainly due to frequent metastasis and recurrence. Deregulation of metastasis suppressors in malignant cells plays critical roles during cancer metastasis. Thus, novel metastasis suppressors are urgently needed to be uncovered to shed new light on molecular mechanisms driving HCC metastasis. In the present study, decreased expression of leukemia inhibitory factor receptor (LIFR) was demonstrated in HCC, and its expression levels were even lower in HCC with metastasis. Downregulated LIFR expression predicted poor prognosis in HCC patients. LIFR was an independent and significant risk factor for their recurrence and survival. Silencing LIFR resulted in forced metastasis of HCC cells, whereas ectopic overexpression of LIFR attenuated migration and invasion of HCC cells in vitro and in vivo. Moreover, LIFR knockdown could activate phosphoinositide 3-kinase/V-akt Murine Thymoma Viral Oncogene Homolog (PI3K/AKT) signaling through enhancing phosphorylation of Janus kinase 1 (JAK1), which successively promoted matrix metalloproteinase 13 (MMP13) expression and HCC metastasis. Combination of LIFR and p-AKT or MMP13 was a more powerful predictor of poor prognosis for HCC patients. Together, these findings conclude that LIFR functions as a novel metastasis suppressor in HCC and may serve as a prognostic biomarker for HCC patients.


Scientific Reports | 2015

Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma

Haojie Jin; Yurong Zhang; Haiyan You; Xuemei Tao; Cun Wang; Guangzhi Jin; Ning Wang; Haoyu Ruan; Dishui Gu; Xisong Huo; Wenming Cong; Wenxin Qin

Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington’s and Alzheimer’s diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p < 0.05). Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both p<0.01). And in vitro studies revealed that KMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.


Cellular Physiology and Biochemistry | 2015

KDM6B Elicits Cell Apoptosis by Promoting Nuclear Translocation of FOXO1 in Non-Small Cell Lung Cancer

Jun Ma; Ning Wang; Yurong Zhang; Cun Wang; Tianxiang Ge; Haojie Jin; Xuan Deng; Xisong Huo; Dishui Gu; Zhouhong Ge; Wei Chu; Liyan Jiang; Wenxin Qin

Background/Aims: Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer and the cause of most cancer-related deaths. The molecular mechanisms that are involved in NSCLC development are currently not well understood. Accumulating evidence shows that histone demethylases play important roles in the regulation of pathological developmental processes in many diseases, including various types of cancers. Methods: Mitochondrial membrane potential assays, migration and invasion assays, caspase-3 and caspase-9 activity assays and western blot analysis were used in this research. Results: We found that overexpression of KDM6B, a demethylase that acts on histone H3 at lysine 27 (H3K27), inhibited cell growth by initiating mitochondria-dependent apoptosis and by attenuating the invasion-metastasis cascade in NSCLC cells. Moreover, our results showed that KDM6B directly interacted with FOXO1 and that overexpression of KDM6B promoted nuclear accumulation of FOXO1. The effects of KDM6B on cell apoptosis and metastasis were weakened by knockdown of FOXO1 expression. On the contrary, knocking down expression of KDM6B inhibited cell apoptosis and promoted cell growth by mitigating the nuclear translocation of FOXO1 in NSCLC cells. Conclusions: These findings suggest that KDM6B may act in a pro-apoptotic role in NSCLC by causing the nuclear translocation of FOXO1.


Medical Oncology | 2015

LRG1 suppresses the migration and invasion of hepatocellular carcinoma cells

Yurong Zhang; Qin Luo; Ning Wang; Fangyuan Hu; Haojie Jin; Tianxiang Ge; Cun Wang; Wenxin Qin

Abstract Hepatocellular carcinoma (HCC) is a malignant tumor driven by complex pathological mechanisms and is characterized by fast progression and poor prognosis. The main cause of death in HCC patients is tumor metastasis. However, underlying molecular mechanisms of metastasis are largely unknown in HCC. In the present study, a novel metastasis-related gene, leucine-rich-alpha-2-glycoprotein 1 (LRG1), was identified in HCC. We revealed that LRG1 expression was downregulated in HCC tissues by quantitative real-time PCR and immunohistochemical staining. In vitro assays demonstrated LRG1 had no effect on cell proliferation. Migratory and invasive potential of HCC cells was reduced by ectopic overexpression of LRG1, whereas silencing LRG1 could enhance migration and invasion of HCC cells. Furthermore, exogenous recombinant human protein of LRG1 could inhibit migration and invasion of HCC cells in vitro. The above findings indicate that LGR1 is involved in the inhibition of HCC metastasis and it may function as a novel metastasis suppressor in HCC.


Cancer Letters | 2016

The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity

Dishui Gu; Haojie Jin; Guangzhi Jin; Cun Wang; Ning Wang; Fangyuan Hu; Qin Luo; Wei Chu; Ming Yao; Wenxin Qin

The asialoglycoprotein receptor (ASGR), which is expressed mainly in hepatocytes, is downregulated in poorly differentiated hepatocellular carcinoma (HCC). Here we investigated the role of ASGR1 in HCC metastasis as well as the possible underlying molecular mechanisms. We found that ASGR1 was downregulated in HCC tissue compared with adjacent non-tumorous liver tissue and that lower ASGR1 expression was associated with higher TNM stage and poorer prognosis in HCC patients. ASGR1 overexpression inhibited hepatoma cell migration and invasion in vitro and in vivo, while ASGR1 knockdown had the opposite effects. Furthermore, ASGR1 interacted directly with human longevity assurance homolog 2 of yeast LAG1 (LASS2). Knockdown of LASS2 attenuated the inhibitory effects of ASGR1 on hepatoma cell migration and invasion in vitro. ASGR1 decreased V-ATPase activity in hepatoma cells, and this was reversed by LASS2 knockdown. Finally, HCC patients with low LASS2 levels had poor prognosis, while those with high ASGR1 and LASS2 levels had better prognosis. Thus, ASGR1 may act as a potential metastasis suppressor in HCC, and the combination of ASGR1 and LASS2 may help predict the prognosis of HCC patients.


Theranostics | 2016

A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma

Yurong Zhang; Xuemei Tao; Guangzhi Jin; Haojie Jin; Ning Wang; Fangyuan Hu; Qin Luo; Huiqun Shu; Fangyu Zhao; Ming Yao; Jing-Yuan Fang; Wenming Cong; Wenxin Qin; Cun Wang

Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.


Theranostics | 2018

Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma

Hui Wang; Linhui Liang; Qiongzhu Dong; Lin Huan; Jia He; Botai Li; Chen Yang; Haojie Jin; Lin Wei; Chengtao Yu; Fangyu Zhao; Jinjun Li; Ming Yao; Wenxin Qin; Lunxiu Qin; Xianghuo He

Long noncoding RNAs (lncRNAs) have been associated with hepatocellular carcinoma (HCC), but the underlying molecular mechanisms of their specific association with hepatocarcinogenesis have not been fully explored. Methods: miR503HG was identified by microarray and validated by real-time PCR. Survival analysis was evaluated using the Kaplan-Meier method and assessed using the log-rank test. In vitro and in vivo assays were preformed to explore the biological effects of miR503HG in HCC cells. The interaction of miR503HG with HNRNPA2B1 was identified by RNA pull-down and RNA immunoprecipitation. Expression of HNRNPA2B1 was examined by western blotting, immunofluorescence and immunohistochemical analyses, while HNRNPA2B1 ubiquitination was detected by immunoprecipitation. Results: We have identified 713 differentially expressed lncRNAs in 12 pairs of HCC tissues compared with corresponding noncancerous liver tissues. One of these lncRNAs, miR503HG, the host gene of miR503, is markedly decreased in HCC. Expression level of miR503HG is significantly associated with the time to recurrence and overall survival and is an independent risk factor for recurrence and survival. Enhanced expression of miR503HG could noticeably inhibit HCC invasion and metastasis in vitro and in vivo. Further investigation suggested that miR503HG could specifically interact with the heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1). miR503HG promoted HNRNPA2B1 degradation via the ubiquitin-proteasome pathway, which reduced the stability of p52 and p65 mRNA, and simultaneously suppressed the NF-κB signaling pathway in HCC cells. In addition, miR503HG can function synergistically with miR503 to inhibit HCC migration. Conclusion: Our findings support a role for miR503HG in tumor recurrence risk and survival prediction in HCC patients. We demonstrate a novel mechanism by which miR503HG inhibits the NF-κB signaling pathway and exerts its metastatic tumor suppression function through modulating the ubiquitination status of HNRNPA2B1.

Collaboration


Dive into the Haojie Jin's collaboration.

Top Co-Authors

Avatar

Wenxin Qin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Cun Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ning Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dishui Gu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yurong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guangzhi Jin

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ming Yao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jing-Yuan Fang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qin Luo

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wenming Cong

Second Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge