Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where HaoSheng Sun is active.

Publication


Featured researches published by HaoSheng Sun.


Science | 2010

Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.

Mary Kay Lobo; Herbert E. Covington; Dipesh Chaudhury; Allyson K. Friedman; HaoSheng Sun; Diane Damez-Werno; David M. Dietz; Samir Zaman; Ja Wook Koo; Pamela J. Kennedy; Ezekiell Mouzon; Murtaza Mogri; Rachael L. Neve; Karl Deisseroth; Ming-Hu Han; Eric J. Nestler

BDNF, Dopamine, and Cocaine Reward The nucleus accumbens plays a crucial role in mediating the rewarding effects of drugs of abuse. Different subpopulations of nucleus accumbens projection neurons exhibit balanced but antagonistic influences on their downstream outputs and behaviors. However, their roles in regulating reward behaviors remains unclear. Lobo et al. (p. 385) evaluated the roles of the two subtypes of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, in cocaine reward. Deleting TrkB, the receptor for brain-derived neurotrophic factor, selectively in each cell type, and selectively controlling the firing of each cell type using optogenetic techniques allowed for confirmation that D1- and D2-containing neurons produced opposite effects on cocaine reward. Selective manipulation of neuron subtypes produces opposite effects on behavioral responses to cocaine. The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.


Neuropsychopharmacology | 2013

Epigenetics of the Depressed Brain: Role of Histone Acetylation and Methylation

HaoSheng Sun; Pamela J. Kennedy; Eric J. Nestler

Major depressive disorder is a chronic, remitting syndrome involving widely distributed circuits in the brain. Stable alterations in gene expression that contribute to structural and functional changes in multiple brain regions are implicated in the heterogeneity and pathogenesis of the illness. Epigenetic events that alter chromatin structure to regulate programs of gene expression have been associated with depression-related behavior, antidepressant action, and resistance to depression or ‘resilience’ in animal models, with increasing evidence for similar mechanisms occurring in postmortem brains of depressed humans. In this review, we discuss recent advances in our understanding of epigenetic contributions to depression, in particular the role of histone acetylation and methylation, which are revealing novel mechanistic insight into the syndrome that may aid in the development of novel targets for depression treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens

Ian Maze; Jian Feng; Matthew Wilkinson; HaoSheng Sun; Li Shen; Eric J. Nestler

Repeated cocaine exposure induces persistent alterations in genome-wide transcriptional regulatory networks, chromatin remodeling activity and, ultimately, gene expression profiles in the brains reward circuitry. Virtually all previous investigations have centered on drug-mediated effects occurring throughout active euchromatic regions of the genome, with very little known concerning the impact of cocaine exposure on the regulation and maintenance of heterochromatin in adult brain. Here, we report that cocaine dramatically and dynamically alters heterochromatic histone H3 lysine 9 trimethylation (H3K9me3) in the nucleus accumbens (NAc), a key brain reward region. Furthermore, we demonstrate that repeated cocaine exposure causes persistent decreases in heterochromatization in this brain region, suggesting a potential role for heterochromatic regulation in the long-term actions of cocaine. To identify precise genomic loci affected by these alterations, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq) was performed on NAc. ChIP-Seq analyses confirmed the existence of the H3K9me3 mark mainly within intergenic regions of the genome and identified specific patterns of cocaine-induced H3K9me3 regulation at repetitive genomic sequences. Cocaine-mediated decreases in H3K9me3 enrichment at specific genomic repeats [e.g., long interspersed nuclear element (LINE)-1 repeats] were further confirmed by the increased expression of LINE-1 retrotransposon-associated repetitive elements in NAc. Such increases likely reflect global patterns of genomic destabilization in this brain region after repeated cocaine administration and open the door for future investigations into the epigenetic and genetic basis of drug addiction.


Nature | 2014

β-catenin mediates stress resilience through Dicer1/microRNA regulation

Caroline Dias; Jian Feng; HaoSheng Sun; Ning Yi Shao; Michelle S. Mazei-Robison; Diane Damez-Werno; Kimberly N. Scobie; Rosemary C. Bagot; Benoit Labonté; Efrain Ribeiro; Xiaochuan Liu; Pamela J. Kennedy; Vincent Vialou; Deveroux Ferguson; Catherine J. Peña; Erin S. Calipari; Ja Wook Koo; Ezekiell Mouzon; Subroto Ghose; Carol A. Tamminga; Rachael L. Neve; Li Shen; Eric J. Nestler

β-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice β-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide β-catenin enrichment mapping, we identify Dicer1—important in small RNA (for example, microRNA) biogenesis—as a β-catenin target gene that mediates resilience. Small RNA profiling after excising β-catenin from nucleus accumbens in the context of chronic stress reveals β-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish β-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.


Nature Neuroscience | 2012

Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons.

David M. Dietz; HaoSheng Sun; Mary Kay Lobo; Michael E. Cahill; Benjamin Chadwick; Virginia Gao; Ja Wook Koo; Michelle S. Mazei-Robison; Caroline Dias; Ian Maze; Diane Damez-Werno; Karen Dietz; Kimberly N. Scobie; Deveroux Ferguson; Daniel J. Christoffel; Yoko H. Ohnishi; Georgia E. Hodes; Yi Zheng; Rachael L. Neve; Klaus M. Hahn; Scott J. Russo; Eric J. Nestler

Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1 or local knockout of Rac1 is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 or light activation of a photoactivatable form of Rac1 blocks the ability of repeated cocaine exposure to produce this effect. Downregulation of Rac1 activity likewise promotes behavioral responses to cocaine exposure, with activation of Rac1 producing the opposite effect. These findings establish that Rac1 signaling mediates structural and behavioral plasticity in response to cocaine exposure.


Nature Neuroscience | 2014

Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors

Elizabeth A. Heller; Hannah M. Cates; Catherine J. Peña; HaoSheng Sun; Ningyi Shao; Jian Feng; Sam A. Golden; James P. Herman; Jessica J. Walsh; Michelle S. Mazei-Robison; Deveroux Ferguson; Scott W. Knight; Mark A. Gerber; Christian Nievera; Ming-Hu Han; Scott J. Russo; Carol S. Tamminga; Rachael L. Neve; Li Shen; H. Steve Zhang; Feng Zhang; Eric J. Nestler

Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior.


Science | 2012

BDNF Is a Negative Modulator of Morphine Action

Ja Wook Koo; Michelle S. Mazei-Robison; Dipesh Chaudhury; Barbara Juarez; Quincey LaPlant; Deveroux Ferguson; Jian Feng; HaoSheng Sun; Kimberly N. Scobie; Diane Damez-Werno; Marshall Crumiller; Yoshinori N. Ohnishi; Yoko H. Ohnishi; Ezekiell Mouzon; David M. Dietz; Mary Kay Lobo; Rachael L. Neve; Scott J. Russo; Ming-Hu Han; Eric J. Nestler

Regulating Opioid Responses Different drugs of abuse are thought to highjack similar reward systems in the brain using common mechanisms. However, Koo et al. (p. 124) now observe that some of the neural mechanisms that regulate opiate reward can be both different and even opposite to those that regulate reward by stimulant drugs. While knockdown of brain-derived neurotrophic factor (BDNF) in the ventral tegmental area in mice antagonized the response to cocaine, the same manipulation strengthened the potential of opiates to increase dopamine neuron excitability. Optogenetic stimulation of dopaminergic terminals in the nucleus accumbens could counteract the effects of BDNF on morphine reward blockade. Morphine reward is modulated by ventral tegmental area brain-derived neurotrophic factor in a way that is opposite to its modulation of cocaine reward. Brain-derived neurotrophic factor (BDNF) is a key positive regulator of neural plasticity, promoting, for example, the actions of stimulant drugs of abuse such as cocaine. We discovered a surprising opposite role for BDNF in countering responses to chronic morphine exposure. The suppression of BDNF in the ventral tegmental area (VTA) enhanced the ability of morphine to increase dopamine (DA) neuron excitability and promote reward. In contrast, optical stimulation of VTA DA terminals in nucleus accumbens (NAc) completely reversed the suppressive effect of BDNF on morphine reward. Furthermore, we identified numerous genes in the NAc, a major target region of VTA DA neurons, whose regulation by BDNF in the context of chronic morphine exposure mediated this counteractive function. These findings provide insight into the molecular basis of morphine-induced neuroadaptations in the brain’s reward circuitry.


Nature Neuroscience | 2014

Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway

Jessica J. Walsh; Allyson K. Friedman; HaoSheng Sun; Elizabeth A. Heller; Stacy M. Ku; Barbara Juarez; Veronica L. Burnham; Michelle S. Mazei-Robison; Deveroux Ferguson; Sam A. Golden; Ja Wook Koo; Dipesh Chaudhury; Daniel J. Christoffel; Lisa E. Pomeranz; Jeffrey M. Friedman; Scott J. Russo; Eric J. Nestler; Ming-Hu Han

Mechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc. These results unravel a stress context–detecting function of the brains mesolimbic circuit.


The Journal of Neuroscience | 2012

Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens

HaoSheng Sun; Ian Maze; David M. Dietz; Kimberly N. Scobie; Pamela J. Kennedy; Diane Damez-Werno; Rachael L. Neve; Venetia Zachariou; Li Shen; Eric J. Nestler

Dysregulation of histone modifying enzymes has been associated with numerous psychiatric disorders. Alterations in G9a (Ehmt2), a histone methyltransferase that catalyzes the euchromatic dimethylation of histone H3 at lysine 9 (H3K9me2), has been implicated recently in mediating neural and behavioral plasticity in response to chronic cocaine administration. Here, we show that chronic morphine, like cocaine, decreases G9a expression, and global levels of H3K9me2, in mouse nucleus accumbens (NAc), a key brain reward region. In contrast, levels of other histone methyltransferases or demethylases, or of other methylated histone marks, were not affected in NAc by chronic morphine. Through viral-mediated gene transfer and conditional mutagenesis, we found that overexpression of G9a in NAc opposes morphine reward and locomotor sensitization and concomitantly promotes analgesic tolerance and naloxone-precipitated withdrawal, whereas downregulation of G9a in NAc enhances locomotor sensitization and delays the development of analgesic tolerance. We identified downstream targets of G9a by providing a comprehensive chromatin immunoprecipitation followed by massively parallel sequencing analysis of H3K9me2 distribution in NAc in the absence and presence of chronic morphine. These data provide novel insight into the epigenomic regulation of H3K9me2 by chronic morphine and suggest novel chromatin-based mechanisms through which morphine-induced addictive-like behaviors arise.


Biological Psychiatry | 2010

Yohimbine Increases Impulsivity Through Activation of cAMP Response Element Binding in the Orbitofrontal Cortex

HaoSheng Sun; Thomas A. Green; David E.H. Theobald; Shari G. Birnbaum; Danielle L. Graham; Fiona D. Zeeb; Eric J. Nestler; Catharine A. Winstanley

BACKGROUND Stress can increase impulsivity and has a negative impact on psychiatric outcome. Norepinephrine is heavily implicated in responses to stress, and the alpha(2) antagonist yohimbine is used clinically to study this aspect of the stress response. Yohimbine induces mild anxiety and increases impulsivity in healthy volunteers but has more detrimental effects in some psychiatric populations, triggering mania in bipolar patients and drug craving in substance-dependent individuals. Understanding the mechanism by which yohimbine affects brain function could provide insight into the heightened reaction to stress in these patients. METHODS Yohimbines effects were assessed in rats using the five-choice serial reaction time test of attention and impulse control. We then examined whether yohimbine altered activity of cyclic adenosine monophosphate response element binding (CREB) protein-a transcription factor implicated in the stress response-in brain areas that regulate impulsivity. The behavioral consequences of any changes in CREB activity were subsequently assessed using viral-mediated gene transfer to regionally overexpress CREB or the dominant negative antagonist mCREB. RESULTS Yohimbine increased impulsive responding in rats and selectively increased CREB phosphorylation within the orbitofrontal cortex but not medial prefrontal cortex or nucleus accumbens. Overexpressing mCREB within the orbitofrontal cortex blocked yohimbines effects on impulsivity, whereas overexpressing CREB in this region increased impulsive responding and potentiated the proimpulsive actions of yohimbine. DISCUSSION These data suggest a novel molecular mechanism contributing to impulsivity that may be sensitive to stress. Such findings may improve our understanding of the neurobiological pathways linking the response to stress and impulsivity in both healthy and psychiatric populations.

Collaboration


Dive into the HaoSheng Sun's collaboration.

Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Damez-Werno

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Li Shen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ja Wook Koo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kimberly N. Scobie

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ezekiell Mouzon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Caroline Dias

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Deveroux Ferguson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge