Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haoxing Xu is active.

Publication


Featured researches published by Haoxing Xu.


Nature | 2002

TRPV3 is a calcium-permeable temperature-sensitive cation channel.

Haoxing Xu; I. Scott Ramsey; Suhas Kotecha; Magdalene M. Moran; Jayhong A. Chong; Deborah Lawson; Pei Ge; Jeremiah Lilly; Inmaculada Silos-Santiago; Yu Xie; Peter S. DiStefano; Rory A. J. Curtis; David E. Clapham

Transient receptor potential (TRP) proteins are cation-selective channels that function in processes as diverse as sensation and vasoregulation. Mammalian TRP channels that are gated by heat and capsaicin (>43 °C; TRPV1 (ref. 1)), noxious heat (>52 °C; TRPV2 (ref. 2)), and cooling (< 22 °C; TRPM8 (refs 3, 4)) have been cloned; however, little is known about the molecular determinants of temperature sensing in the range between ∼22 °C and 40 °C. Here we have identified a member of the vanilloid channel family, human TRPV3 (hTRPV3) that is expressed in skin, tongue, dorsal root ganglion, trigeminal ganglion, spinal cord and brain. Increasing temperature from 22 °C to 40 °C in mammalian cells transfected with hTRPV3 elevated intracellular calcium by activating a nonselective cationic conductance. As in published recordings from sensory neurons, the current was steeply dependent on temperature, sensitized with repeated heating, and displayed a marked hysteresis on heating and cooling. On the basis of these properties, we propose that hTRPV3 is thermosensitive in the physiological range of temperatures between TRPM8 and TRPV1.


Nature Neuroscience | 2006

Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels

Haoxing Xu; Markus Delling; Janice C Jun; David E. Clapham

Carvacrol, eugenol and thymol are major components of plants such as oregano, savory, clove and thyme. When applied to the tongue, these flavors elicit a warm sensation. They are also known to be skin sensitizers and allergens. The transient receptor potential channel (TRPV3) is a warm-sensitive Ca2+-permeable cation channel highly expressed in the skin, tongue and nose. Here we show that TRPV3 is strongly activated and sensitized by carvacrol, thymol and eugenol. Tongue and skin epithelial cells respond to carvacrol and eugenol with an increase in intracellular Ca2+ levels. We also show that this TRPV3 activity is strongly potentiated by phospholipase C–linked, G protein–coupled receptor stimulation. In addition, carvacrol activates and rapidly desensitizes TRPA1, which may explain the pungency of oregano. Our results support a role for temperature-sensitive TRP channels in chemesthesis in oral and nasal epithelium and suggest that TRPV3 may be a molecular target of plant-derived skin sensitizers.


The Journal of Neuroscience | 2004

Phosphatidylinositol 3-Kinase Activates ERK in Primary Sensory Neurons and Mediates Inflammatory Heat Hyperalgesia through TRPV1 Sensitization

Zhi Ye Zhuang; Haoxing Xu; David E. Clapham; Ru-Rong Ji

Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential vanilloid receptor-1) and TrkA receptors on nociceptor sensory nerve terminals. We examined the activation of PI3K in primary sensory DRG neurons by these inflammatory agents and the contribution of PI3K activation to inflammatory pain. We further investigated the correlation between the PI3K and the ERK (extracellular signal-regulated protein kinase) pathway. Capsaicin and NGF induce phosphorylation of the PI3K downstream target AKT (protein kinase B), which is blocked by the PI3K inhibitors LY294002 and wortmannin, indicative of the activation of PI3K by both agents. ERK activation by capsaicin and NGF was also blocked by PI3K inhibitors. Similarly, intradermal capsaicin in rats activated PI3K and ERK in C-fiber DRG neurons and epidermal nerve fibers. Injection of PI3K or MEK (ERK kinase) inhibitors into the hindpaw attenuated capsaicin- and NGF-evoked heat hyperalgesia but did not change basal heat sensitivity. Furthermore, PI3K, but not ERK, inhibition blocked early induction of hyperalgesia. In acutely dissociated DRG neurons, the capsaicin-induced TRPV1 current was strikingly potentiated by NGF, and this potentiation was completely blocked by PI3K inhibitors and primarily suppressed by MEK inhibitors. Therefore, PI3K induces heat hyperalgesia, possibly by regulating TRPV1 activity, in an ERK-dependent manner. The PI3K pathway also appears to play a role that is distinct from ERK by regulating the early onset of inflammatory pain.


Nature Communications | 2010

PI(3,5)P 2 controls membrane trafficking by direct activation of mucolipin Ca 2+ release channels in the endolysosome

Xian Ping Dong; Dongbiao Shen; Xiang Wang; Taylor Dawson; Xinran Li; Qi Zhang; Xiping Cheng; Yanling Zhang; Lois S. Weisman; Markus Delling; Haoxing Xu

Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.


Nature | 2008

The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel

Xian Ping Dong; Xiping Cheng; Eric W. Mills; Markus Delling; Fudi Wang; Tino Kurz; Haoxing Xu

TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe3+-bound transferrin receptors, or after lysosomal degradation of ferritin–iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe2+ transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe2+ transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe2+ permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe2+ at varying degrees, which correlate well with the disease severity. A comparison of TRPML1-/- ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe2+ levels, an increase in intralysosomal Fe2+ levels and an accumulation of lipofuscin-like molecules in TRPML1-/- cells. We propose that TRPML1 mediates a mechanism by which Fe2+ is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients.


The Journal of Neuroscience | 2005

Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism.

Haoxing Xu; Nathaniel T. Blair; David E. Clapham

Camphor is a naturally occurring compound that is used as a major active ingredient of balms and liniments supplied as topical analgesics. Despite its long history of common medical use, the underlying molecular mechanism of camphor action is not understood. Capsaicin and menthol, two other topically applied agents widely used for similar purposes, are known to excite and desensitize sensory nerves by acting on two members of transient receptor potential (TRP) channel superfamily: heat-sensitive TRP vanilloid subtype 1 (TRPV1) and cold-sensitive TRP channel M8, respectively. Camphor has recently been shown to activate TRPV3, and here we show that camphor also activates heterologously expressed TRPV1, requiring higher concentrations than capsaicin. Activation was enhanced by phospholipase C-coupled receptor stimulation mimicking inflamed conditions. Similar camphor-activated TRPV1-like currents were observed in isolated rat DRG neurons and were strongly potentiated after activation of protein kinase C with phorbol-12-myristate-13-acetate. Camphor activation of rat TRPV1 was mediated by distinct channel regions from capsaicin, as indicated by camphor activation in the presence of the competitive inhibitor capsazepine and in a capsaicin-insensitive point mutant. Camphor did not activate the capsaicin-insensitive chicken TRPV1. TRPV1 desensitization is believed to contribute to the analgesic actions of capsaicin. We found that, although camphor activates TRPV1 less effectively, camphor application desensitized TRPV1 more rapidly and completely than capsaicin. Conversely, TRPV3 current sensitized after repeated camphor applications, which is inconsistent with the analgesic role of camphor. We also found that camphor inhibited several other related TRP channels, including ankyrin-repeat TRP 1 (TRPA1). The camphor-induced desensitization of TRPV1 and block of TRPA1 may underlie the analgesic effects of camphor.


Nature Cell Biology | 2015

Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB

Diego L. Medina; Simone Di Paola; Ivana Peluso; Andrea Armani; Diego De Stefani; Rossella Venditti; Sandro Montefusco; Anna Scotto-Rosato; Carolina Prezioso; Alison Forrester; Carmine Settembre; Wuyang Wang; Qiong Gao; Haoxing Xu; Marco Sandri; Rosario Rizzuto; Maria Antonietta De Matteis; Andrea Ballabio

The view of the lysosome as the terminal end of cellular catabolic pathways has been challenged by recent studies showing a central role of this organelle in the control of cell function. Here we show that a lysosomal Ca2+ signalling mechanism controls the activities of the phosphatase calcineurin and of its substrate TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy. Lysosomal Ca2+ release through mucolipin 1 (MCOLN1) activates calcineurin, which binds and dephosphorylates TFEB, thus promoting its nuclear translocation. Genetic and pharmacological inhibition of calcineurin suppressed TFEB activity during starvation and physical exercise, while calcineurin overexpression and constitutive activation had the opposite effect. Induction of autophagy and lysosomal biogenesis through TFEB required MCOLN1-mediated calcineurin activation. These data link lysosomal calcium signalling to both calcineurin regulation and autophagy induction and identify the lysosome as a hub for the signalling pathways that regulate cellular homeostasis.


Current Opinion in Neurobiology | 2004

TRP ion channels in the nervous system

Magdalene M. Moran; Haoxing Xu; David E. Clapham

The transient receptor potential (TRP) superfamily comprises a group of non-selective cation channels that sense and respond to changes in their local environments. TRP channels are found in many eukaryotes, from yeast to mammals. They are a diverse group of proteins organized into six families: classical (TRPC), vanilloid (TRPV), melastatin (TRPM), muclopins (TRPML), polycystin (TRPP), and ANKTM1 (TRPA). In the peripheral nervous system, stimuli including temperature, pressure, inflammatory agents, and receptor activation effect TRP-mediated responses. In the central nervous system, TRPs participate in neurite outgrowth, receptor signalling and excitotoxic cell death resulting from anoxia. TRP channels are emerging as essential cellular switches that allow animals to respond to their environments.


Cell | 2012

TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes

Xiang Wang; Xiaoli Zhang; Xian Ping Dong; Mohammad Samie; Xinran Li; Xiping Cheng; Andrew Goschka; Dongbiao Shen; Yandong Zhou; Janice Harlow; Michael X. Zhu; David E. Clapham; Dejian Ren; Haoxing Xu

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Nature Communications | 2012

Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release

Dongbiao Shen; Xiang Wang; Xinran Li; Xiaoli Zhang; Zepeng Yao; Shannon Dibble; Xian Ping Dong; Ting Yu; Andrew P. Lieberman; Hollis D. Showalter; Haoxing Xu

Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1s expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

Collaboration


Dive into the Haoxing Xu's collaboration.

Top Co-Authors

Avatar

Chun Jiang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinran Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

David E. Clapham

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ningren Cui

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Xiang Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianping Wu

Georgia State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge