Harald Auge
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Auge.
Oecologia | 2005
Oliver Bossdorf; Harald Auge; Lucile Lafuma; William E. Rogers; Evan Siemann; Daniel Prati
Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.
Molecular Ecology | 2005
Walter Durka; Oliver Bossdorf; Daniel Prati; Harald Auge
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (FST = 0.704) and the introduced (FST = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.
American Journal of Botany | 2004
Oliver Bossdorf; Stefan Schröder; Daniel Prati; Harald Auge
The European herb garlic mustard (Alliaria petiolata) is a serious invader of North American deciduous forests. One explanation for its success could be that in the absence of specialized herbivores, selection has favored less defended but more vigorous genotypes. This idea was addressed by comparing offspring from several native and introduced Alliaria populations with respect to their palatability to insect herbivores and their tolerance to simulated herbivory. Feeding rates of a specialist weevil from the native range were significantly greater on American plants, suggesting a loss of resistance in the introduced range. In contrast, there was significant population variation but no continent effect in the feeding rates of a generalist caterpillar. After simulated herbivory, A. petiolata showed a substantial regrowth capacity that involved changes in plant growth, architecture, and allocation. Removal of 75% leaf area or of all bolting stems reduced plant fitness to 81% and 58%, respectively, of the fitness of controls. There was no indication of a difference in tolerance between native and introduced Alliaria populations or of a trade-off between tolerance and resistance.
Oecologia | 2008
Jennifer L. Williams; Harald Auge; John L. Maron
Invasive plants may respond through adaptive evolution and/or phenotypic plasticity to new environmental conditions where they are introduced. Although many studies have focused on evolution of invaders particularly in the context of testing the evolution of increased competitive ability (EICA) hypothesis, few consistent patterns have emerged. Many tests of the EICA hypothesis have been performed in only one environment; such assessments may be misleading if plants that perform one way at a particular site respond differently across sites. Single common garden tests ignore the potential for important contributions of both genetic and environmental factors to affect plant phenotype. Using a widespread invader in North America, Cynoglossum officinale, we established reciprocal common gardens in the native range (Europe) and introduced range (North America) to assess genetically based differences in size, fecundity, flowering phenology and threshold flowering size between native and introduced genotypes as well as the magnitude of plasticity in these traits. In addition, we grew plants at three nutrient levels in a pot experiment in one garden to test for plasticity across a different set of conditions. We did not find significant genetically based differences between native and introduced populations in the traits we measured; in our experiments, introduced populations of C. officinale were larger and more fecund, but only in common garden experiments in the native range. We found substantial population-level plasticity for size, fecundity and date of first flowering, with plants performing better in a garden in Germany than in Montana. Differentiation of native populations in the magnitude of plasticity was much stronger than that of introduced populations, suggesting an important role for founder effects. We did not detect evidence of an evolutionary change in threshold flowering size. Our study demonstrates that detecting genetically based differences in traits may require measuring plant responses to more than one environment.
Oecologia | 2007
Yu-Long Feng; Harald Auge; Susan K. Ebeling
The general-purpose genotype hypothesis and the hypothesis of the evolution of invasiveness predict that invasive species are characterized by particular traits that confer invasiveness. However, these traits are still not well-defined. In this study, ecophysiological traits of eight populations of the invasive shrub Buddleja davidii from a wide range of European locations and five co-occurring native woody species in Germany were compared in a common garden experiment. We hypothesized that the invader has higher resource capture ability and utilization efficiency than the natives. No differences were detected among the eight populations of B. davidii in any of the traits evaluated, indicating that the invader did not evolve during range expansion, thus providing support to the general-purpose genotype hypothesis. The invader showed significantly higher maximum electron transport rate, maximum carboxylation rate, carboxylation efficiency, light-saturated photosynthetic rate (Pmax) and photosynthetic nitrogen utilization efficiency (PNUE) than the five natives. Leaf nitrogen content was not significantly different between the invader and the natives, but the invader allocated more nitrogen to the photosynthetic machinery than the natives. The increased nitrogen content in the photosynthetic machinery resulted in a higher resource capture ability and utilization efficiency in the invader. At the same intercellular CO2 concentration, Pmax was significantly higher in the invader than in the natives, again confirming the importance of the higher nitrogen allocation to photosynthesis. The invader reduced metabolic cost by increasing the ratio of Pmax to dark respiration rate (Rd), but it did not reduce carbon cost by increasing the specific leaf area and decreasing leaf construction cost. The higher nitrogen allocation to the photosynthetic machinery, Pmax, PNUE and Pmax/Rd may facilitate B. davidii invasion, although studies involving a wide range of invasive species are needed to understand the generality of this pattern and to fully assess the ecological advantages afforded by these features.
Molecular Ecology | 2001
Harald Auge; Barbara Neuffer; Friederike Erlinghagen; Rudolf Grupe; Roland Brandl
We performed demographic and molecular investigations on woodland populations of the clonal herb Viola riviniana in central Germany. We investigated the pattern of seedling recruitment, the amount of genotypic (clonal) variation and the partitioning of genetic variation among and within populations. Our demographic study was carried out in six violet populations of different ages and habitat conditions. It revealed that repeated seedling recruitment takes place in all of these populations, and that clonal propagation is accompanied by high ramet mortality. Our molecular investigations were performed on a subset of three of these six violet populations. Random amplified polymorphic DNA analyses using six primers yielded 45 scorable bands that were used to identify multilocus genotypes, i.e. putative clones. Consistent with our demographic results and independent of population age, we found a large genotypic diversity with a mean proportion of distinguishable genotypes of 0.93 and a mean Simpson’s diversity index of 0.99. Using amova we found a strong genetic differentiation among these violet populations with a ΦST value of 0.41. We suggest that a high selfing rate, limited gene flow due to short seed dispersal distances and drift due to founder effects are responsible for this pattern. Although Viola riviniana is a clonal plant, traits associated with sexual reproduction rather than clonality per se are moulding the pattern of genetic variation in this species.
Molecular Ecology | 1999
Barbara Neuffer; Harald Auge; H. Mesch; U. Amarell; Roland Brandl
Hybridization between plant species occurs frequently but hybrids are often restricted to ecotones or disturbed habitats. In this study we show that introgressive hybrids between the tetraploid Viola riviniana and the diploid V. reichenbachiana invaded pine forests of the Dübener Heide (central Germany), an area affected by calcareous pollutants. The spread of these violet populations was correlated with the impact of pollution on habitat conditions. We compared morphology, cytology and random amplified polymorphic DNA (RAPD) bands among six Viola populations from the Dübener Heide and three populations of each pure species. RAPD analysis using 12 primers revealed 141 scorable bands. We considered bands as species specific if they occurred in at least 75% of the plants in one pure violet species but in none of the other. Seven bands were specific to V. riviniana and 11 bands were specific to V. reichenbachiana. Two plants of a V. reichenbachiana population were identified as hybrids. Of the Viola populations from the Dübener Heide, one was diploid and could be classified as V. reichenbachiana by morphology and RAPD markers. However, the majority of the Dübener Heide populations were tetraploid, and of a more variable morphology than V. riviniana and V. reichenbachiana, showing different combinations of intermediate characters, characters of the pure species and extreme characters. Despite their overall genetic similarity to V. riviniana, these plants could be identified as introgressive hybrids between V. riviniana and V. reichenbachiana by species‐specific RAPD bands. Therefore, we propose that recurrent hybridization and backcrossing resulted in novel genotypes adapted to the changed environment of polluted pine forests.
Oecologia | 2009
Stefan Hempel; Claudia Stein; Sybille B. Unsicker; Carsten Renker; Harald Auge; Wolfgang W. Weisser; François Buscot
The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.
Ecology | 2010
Claudia Stein; Sybille B. Unsicker; Ansgar Kahmen; Markus Wagner; Volker Audorff; Harald Auge; Daniel Prati; Wolfgang W. Weisser
Invertebrate herbivores are ubiquitous in most terrestrial ecosystems, and theory predicts that their impact on plant community biomass should depend on diversity and productivity of the associated plant communities. To elucidate general patterns in the relationship between invertebrate herbivory, plant diversity, and productivity, we carried out a long-term herbivore exclusion experiment at multiple grassland sites in a mountainous landscape of central Germany. Over a period of five years, we used above- and belowground insecticides as well as a molluscicide to manipulate invertebrate herbivory at 14 grassland sites, covering a wide range of plant species diversity (13-38 species/m2) and aboveground plant productivity (272-1125 g x m(-2) x yr(-1)), where plant species richness and productivity of the sites were not significantly correlated. Herbivore exclusion had significant effects on the plant communities: it decreased plant species richness and evenness, and it altered plant community composition. In particular, exclusion of belowground herbivores promoted grasses at the expense of herbs. In contrast to our expectation, herbivore effects on plant community biomass were not influenced by productivity. However, effect size of invertebrate herbivores was negatively correlated with plant diversity of the grasslands: the effect of herbivory on biomass tended to be negative at sites of high diversity and positive at sites of low diversity. In general, the effects of aboveground herbivores were relatively small as compared to belowground herbivores, which were important drivers of plant community composition. Our study is the first to show that variation in the effects of invertebrate herbivory on plant communities across a landscape is significantly influenced by plant species richness.
Ecology | 2010
Jennifer L. Williams; Harald Auge; John L. Maron
A central question in ecology concerns how some exotic plants that occur at low densities in their native range are able to attain much higher densities where they are introduced. This question has remained unresolved in part due to a lack of experiments that assess factors that affect the population growth or abundance of plants in both ranges. We tested two hypotheses for exotic plant success: escape from specialist insect herbivores and a greater response to disturbance in the introduced range. Within three introduced populations in Montana, USA, and three native populations in Germany, we experimentally manipulated insect herbivore pressure and created small-scale disturbances to determine how these factors affect the performance of houndstongue (Cynoglossum officinale), a widespread exotic in western North America. Herbivores reduced plant size and fecundity in the native range but had little effect on plant performance in the introduced range. Small-scale experimental disturbances enhanced seedling recruitment in both ranges, but subsequent seedling survival was more positively affected by disturbance in the introduced range. We combined these experimental results with demographic data from each population to parameterize integral projection population models to assess how enemy escape and disturbance might differentially influence C. officinale in each range. Model results suggest that escape from specialist insects would lead to only slight increases in the growth rate (lambda) of introduced populations. In contrast, the larger response to disturbance in the introduced vs. native range had much greater positive effects on lambda. These results together suggest that, at least in the regions where the experiments were performed, the differences in response to small disturbances by C. officinale contribute more to higher abundance in the introduced range compared to at home. Despite the challenges of conducting experiments on a wide biogeographic scale and the logistical constraints of adequately sampling populations within a range, this approach is a critical step forward to understanding the success of exotic plants.