Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald C. Ott is active.

Publication


Featured researches published by Harald C. Ott.


Nature Medicine | 2008

Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart

Harald C. Ott; Thomas S Matthiesen; Saik Kia Goh; Lauren D. Black; Stefan M. Kren; Theoden I. Netoff; Doris A. Taylor

About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.


Nature Medicine | 2010

Regeneration and orthotopic transplantation of a bioartificial lung

Harald C. Ott; Ben Clippinger; Claudius Conrad; Christian Schuetz; Irina Pomerantseva; Laertis Ikonomou; Darrell N. Kotton; Joseph P. Vacanti

About 2,000 patients now await a donor lung in the United States. Worldwide, 50 million individuals are living with end-stage lung disease. Creation of a bioartificial lung requires engineering of viable lung architecture enabling ventilation, perfusion and gas exchange. We decellularized lungs by detergent perfusion and yielded scaffolds with acellular vasculature, airways and alveoli. To regenerate gas exchange tissue, we seeded scaffolds with epithelial and endothelial cells. To establish function, we perfused and ventilated cell-seeded constructs in a bioreactor simulating the physiologic environment of developing lung. By day 5, constructs could be perfused with blood and ventilated using physiologic pressures, and they generated gas exchange comparable to that of isolated native lungs. To show in vivo function, we transplanted regenerated lungs into orthotopic position. After transplantation, constructs were perfused by the recipients circulation and ventilated by means of the recipients airway and respiratory muscles, and they provided gas exchange in vivo for up to 6 h after extubation.


Nature Medicine | 2013

Regeneration and experimental orthotopic transplantation of a bioengineered kidney

Jeremy Song; Jacques P. Guyette; Sarah E. Gilpin; Gabriel Gonzalez; Joseph P. Vacanti; Harald C. Ott

Approximately 100,000 individuals in the United States currently await kidney transplantation, and 400,000 individuals live with end-stage kidney disease requiring hemodialysis. The creation of a transplantable graft to permanently replace kidney function would address donor organ shortage and the morbidity associated with immunosuppression. Such a bioengineered graft must have the kidneys architecture and function and permit perfusion, filtration, secretion, absorption and drainage of urine. We decellularized rat, porcine and human kidneys by detergent perfusion, yielding acellular scaffolds with vascular, cortical and medullary architecture, a collecting system and ureters. To regenerate functional tissue, we seeded rat kidney scaffolds with epithelial and endothelial cells and perfused these cell-seeded constructs in a whole-organ bioreactor. The resulting grafts produced rudimentary urine in vitro when perfused through their intrinsic vascular bed. When transplanted in an orthotopic position in rat, the grafts were perfused by the recipients circulation and produced urine through the ureteral conduit in vivo.


Trends in Molecular Medicine | 2011

Organ engineering based on decellularized matrix scaffolds

Jeremy Song; Harald C. Ott

End-organ failure is one of the major healthcare challenges in the Western world. Yet, donor organ shortage and the need for immunosuppression limit the impact of transplantation. The regeneration of whole organs could theoretically overcome these hurdles. Early milestones have been met by combining stem and progenitor cells with increasingly complex scaffold materials and culture conditions. Because the native extracellular matrix (ECM) guides organ development, repair and physiologic regeneration, it provides a promising alternative to synthetic scaffolds and a foundation for regenerative efforts. Perfusion decellularization is a novel technology that generates native ECM scaffolds with intact 3D anatomical architecture and vasculature. This review summarizes achievements to date and discusses the role of native ECM scaffolds in organ regeneration.


The Annals of Thoracic Surgery | 2011

Enhanced In Vivo Function of Bioartificial Lungs in Rats

Jeremy Song; Samuel Kim; Zhilin Liu; Joren C. Madsen; Douglas J. Mathisen; Joseph P. Vacanti; Harald C. Ott

BACKGROUND More than 11 million Americans live with chronic lung disease; in search for an alternative to donor organs, we attempted to regenerate lungs based on perfusion decellularized lung scaffolds that can be transplanted similar to a donor organ. METHODS Cadaveric rat lungs were decellularized by detergent perfusion. Resulting scaffolds were mounted in bioreactors and seeded with endothelial and fetal lung cells. Biomimetic organ culture was maintained for 7 days. Resulting bioartificial left lungs were transplanted in orthotopic position after left pneumonectomy in rats. Cadaveric left lung transplants and pneumonectomies served as controls. Blood gas analyses, compliance testing, and fluoroscopies were performed on postoperative days 1, 7, and 14. Lungs were removed for final analysis on day 14. RESULTS Perfusion decellularization of cadaveric lungs yielded acellular scaffolds with intact architecture and matrix composition. Alveolar volumes, number, and size were comparable in bioartificial and native lungs, as were gas exchange, vital capacity and compliance in vitro. After using improved graft preservation and postoperative weaning protocols, animals could be fully recovered, and bioartificial lung constructs provided oxygenation as long as 7 days at levels comparable to cadaveric lung transplants. Compliance, gas exchange, and radiographic appearance gradually declined over the subsequent 7 days owing to progressive graft consolidation and inflammation. CONCLUSIONS Perfusion decellularization of cadaveric lungs yields intact scaffolds that can be seeded with cells to generate bioartificial lung grafts. After orthotopic transplantation, grafts are perfused by the recipients circulation, ventilated through the recipients airway and provide gas exchange in vivo for 7 days.


Nature Reviews Cardiology | 2007

The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells.

Harald C. Ott; Thomas S Matthiesen; Johannes Brechtken; Suzanne Grindle; Saik-Kia Goh; Wendy Nelson; Doris A. Taylor

Adequate cell-based repair of adult myocardium remains an elusive goal because most cells that are used cannot generate mature myocardium sufficient to promote large functional improvements. Embryonic stem cells can generate both mature cardiocytes and vasculature, but their use is hampered by associated teratoma formation and the need for an allogeneic source. The detection of sca-1+, c-kit+, or isl-1+ cardiac precursors and the creation of cardiospheres from adult heart tissues suggest that a persistent population of immature progenitor cells is present in the mature myocardium. These cell populations probably represent stages along a continuum of cardiac stem cell development and differentiation. We report isolation from ventricle of uncommitted cardiac progenitor cells, which appear to resemble the more immature, common pool of embryonic lateral plate mesoderm progenitors that yield both myocardial and endocardial cells during normal cardiac development. Under controlled in vitro conditions and in vivo, these cells can differentiate into endothelial, smooth muscle, and cardiomyocyte lineages and can be isolated and expanded to clinically relevant numbers from adult rat myocardial tissue. In this article, we discuss the potential for autologous repair or even cardiac regeneration with cells that follow a developmental pathway similar to embryonic cardiac precursors but without the inherent limitations associated with undifferentiated embryonic stem cells.


Journal of Heart and Lung Transplantation | 2014

Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale

Sarah E. Gilpin; Jacques P. Guyette; Gabriel Gonzalez; Xi Ren; John M. Asara; Douglas J. Mathisen; Joseph P. Vacanti; Harald C. Ott

BACKGROUND Organ engineering is a theoretical alternative to allotransplantation for end-stage organ failure. Whole-organ scaffolds can be created by detergent perfusion via the native vasculature, generating an acellular matrix suitable for recellularization with selected cell types. We aimed to up-scale this process, generating biocompatible scaffolds of a clinically relevant scale. METHODS Rat, porcine, and human lungs were decellularized by detergent perfusion at constant pressures. Collagen, elastin, and glycosaminoglycan content of scaffolds were quantified by colorimetric assays. Proteomic analysis was performed by microcapillary liquid chromatography tandem mass spectrometry. Extracellular matrix (ECM) slices were cultured with human umbilical vein endothelial cells (HUVEC), small airway epithelial cells (SAEC), or pulmonary alveolar epithelial cells (PAECs) and evaluated by time-lapse live cell microscopy and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Whole-organ culture was maintained under constant-pressure media perfusion after seeding with PAECs. RESULTS Rat lungs were decellularized using: (1) sodium dodecyl sulfate (SDS), (2) sodium deoxycholate (SDC), or (3) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Resulting scaffolds showed comparable loss of DNA but greatest preservation of ECM components in SDS-decellularized lungs. Porcine (n = 10) and human (n = 7) lungs required increased SDS concentration, perfusion pressures, and time to achieve decellularization as determined by loss of DNA, with preservation of intact matrix composition and lung architecture. Proteomic analysis of human decellularized lungs further confirmed ECM preservation. Recellularization experiments confirmed scaffold biocompatibility when cultured with mature cell phenotypes and scaffold integrity for the duration of biomimetic culture. CONCLUSIONS SDS-based perfusion decellularization can be applied to whole porcine and human lungs to generate biocompatible organ scaffolds with preserved ECM composition and architecture.


Nature Protocols | 2014

Perfusion decellularization of whole organs

Jacques P. Guyette; Sarah E. Gilpin; Jonathan M. Charest; Luis F. Tapias; Xi Ren; Harald C. Ott

The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4–5 d) and scaled to clinically relevant models (porcine and human organs, 12–14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.


Circulation Research | 2016

Bioengineering Human Myocardium on Native Extracellular Matrix

Jacques P. Guyette; Jonathan M. Charest; Robert W. Mills; Bernhard J. Jank; Philipp T. Moser; Sarah E. Gilpin; Joshua R. Gershlak; Tatsuya Okamoto; Gabriel Gonzalez; David J. Milan; Glenn R. Gaudette; Harald C. Ott

RATIONALE More than 25 million individuals have heart failure worldwide, with ≈4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only ≈2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. OBJECTIVE The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. METHODS AND RESULTS To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. CONCLUSIONS Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.


Journal of Clinical Investigation | 2012

Perspectives on whole-organ assembly: moving toward transplantation on demand

Alejandro Soto-Gutierrez; Jason A. Wertheim; Harald C. Ott; Thomas W. Gilbert

There is an ever-growing demand for transplantable organs to replace acute and chronically damaged tissues. This demand cannot be met by the currently available donor organs. Efforts to provide an alternative source have led to the development of organ engineering, a discipline that combines cell biology, tissue engineering, and cell/organ transplantation. Over the last several years, engineered organs have been implanted into rodent recipients and have shown modest function. In this article, we summarize the most recent advances in this field and provide a perspective on the challenges of translating this promising new technology into a proven regenerative therapy.

Collaboration


Dive into the Harald C. Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris A. Taylor

The Texas Heart Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günther Laufer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge