Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Dimmelmeier is active.

Publication


Featured researches published by Harald Dimmelmeier.


Astronomy and Astrophysics | 2002

Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation

Harald Dimmelmeier; José A. Font; Ewald Müller

We have performed hydrodynamic simulations of relativistic rotational supernova core collapse in axisymmetry and have computed the gravitational radiation emitted by such an event. The Einstein equations are formulated using the confor- mally flat metric approximation, and the corresponding hydrodynamic equations are written as a first-order flux-conservative hyperbolic system. Details of the methodology and of the numerical code have been given in an accompanying paper. We have simulated the evolution of 26 models in both Newtonian and relativistic gravity. The initial configurations are dierentially rotat- ing relativistic 4=3-polytropes in equilibrium which have a central density of 10 10 gc m 3 . Collapse is initiated by decreasing the adiabatic index to some prescribed fixed value. The equation of state consists of a polytropic and a thermal part for a more realis- tic treatment of shock waves. Any microphysics like electron capture and neutrino transport is neglected. Our simulations show that the three dierent types of rotational supernova core collapse and gravitational waveforms identified in previous Newtonian simulations (regular collapse, multiple bounce collapse, and rapid collapse) are also present in relativistic gravity. However, ro- tational core collapse with multiple bounces is only possible in a much narrower parameter range in relativistic gravity. The relativistic models cover almost the same range of gravitational wave amplitudes (4 10 21 h TT 3 10 20 for a source at a distance of 10 kpc) and frequencies (60 Hz 1000 Hz) as the corresponding Newtonian ones. Averaged over all models, the total energy radiated in the form of gravitational waves is 8:2 10 8 Mc 2 in the relativistic case, and 3:6 10 8 Mc 2 in the Newtonian case. For all collapse models that are of the same type in both Newtonian and relativistic gravity, the gravitational wave signal is of lower amplitude. If the collapse type changes, either weaker or stronger signals are found in the relativistic case. For a given model, relativistic gravity can cause a large increase of the characteristic signal frequency of up to a factor of five, which may have important consequences for the signal detection. Our study implies that the prospects for detection of gravita- tional wave signals from axisymmetric supernova rotational core collapse do not improve when taking into account relativistic gravity. The gravitational wave signals obtained in our study are within the sensitivity range of the first generation laser interfer- ometer detectors if the source is located within the Local Group. An online catalogue containing the gravitational wave signal amplitudes and spectra of all our models is available at the URL http://www.mpa-garching.mpg.de/Hydro/hydro.html.


Astronomy and Astrophysics | 2006

Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations

Andreas Marek; Harald Dimmelmeier; H.-Th. Janka; Ewald Müller; R. Buras

We investigate the possibility approximating relativistic effects in hydrodynamical simulations of stellar core collapse and post-bounce evolution by using a modified gravitational potential in an otherwise standard Newtonian hydrodynamic code. Different modifications of a previously introduced effective relativistic potential are discussed. Corresponding hydrostatic solutions are compared with solutions of the TOV equations, and hydrodynamic simulations with two different codes are compared with fully relativistic results. One code is applied for one- and two-dimensional calculations with a simple equation of state and employs either the modified effective relativistic potential in a Newtonian framework or solves the general relativistic field equations under the assumption of the conformal flatness condition (CFC) for the three-metric. The second code allows for full-scale supernova runs including a microphysical equation of state and neutrino transport based on the solution of the Boltzmann equation and its moments equations. We present prescriptions for the effective relativistic potential for self-gravitating fluids to he used in Newtonian codes, which produce excellent agreement with fully relativistic solutions in spherical symmetry, leading to significant improvements compared to previously published approximations. Moreover, they also approximate qualitatively well relativistic solutions for models with rotation.


Physical Review Letters | 2007

3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State

Christian D. Ott; Harald Dimmelmeier; Andreas Marek; Hans-Thomas Janka; Ian Hawke; Burkhard Zink

We present 2D and 3D simulations of the collapse of rotating stellar iron cores in general relativity employing a nuclear equation of state and an approximate treatment of deleptonization. We compare fully general relativistic and conformally flat evolutions and find that the latter treatment is sufficiently accurate for the core-collapse supernova problem. We focus on gravitational wave (GW) emission from rotating collapse, bounce, and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. We also track the growth of a nonaxisymmetric instability in one model, leading to strong narrow-band GW emission.


Physical Review D | 2008

Gravitational wave burst signal from core collapse of rotating stars

Harald Dimmelmeier; Christian D. Ott; Andreas Marek; H.-Thomas Janka

We present results from detailed general relativistic simulations of stellar core collapse to a proto-neutron star, using two different microphysical nonzero-temperature nuclear equations of state as well as an approximate description of deleptonization during the collapse phase. Investigating a wide variety of rotation rates and profiles as well as masses of the progenitor stars and both equations of state, we confirm in this very general setup the recent finding that a generic gravitational wave burst signal is associated with core bounce, already known as type I in the literature. The previously suggested type II (or “multiple-bounce”) waveform morphology does not occur. Despite this reduction to a single waveform type, we demonstrate that it is still possible to constrain the progenitor and postbounce rotation based on a combination of the maximum signal amplitude and the peak frequency of the emitted gravitational wave burst. Our models include to sufficient accuracy the currently known necessary physics for the collapse and bounce phase of core-collapse supernovae, yielding accurate and reliable gravitational wave signal templates for gravitational wave data analysis. In addition, we assess the possibility of nonaxisymmetric instabilities in rotating nascent proto-neutron stars. We find strong evidence that in an iron core-collapse event the postbounce core cannot reach sufficiently rapid rotation to become subject to a classical bar-mode instability. However, many of our postbounce core models exhibit sufficiently rapid and differential rotation to become subject to the recently discovered dynamical instability at low rotation rates.


Astronomy and Astrophysics | 2002

Relativistic simulations of rotational core collapse - I. Methods, initial models, and code tests

Harald Dimmelmeier; José A. Font; Ewald Müller

We describe an axisymmetric general relativistic code for rotational core collapse. The code evolves the coupled system of metric and fluid equations using the ADM 3 + 1 formalism and a conformally flat metric approximation of the Einstein equations. Within this approximation the ADM 3 + 1 equations reduce to a set of ve coupled non-linear elliptic equations for the metric components. The equations are discretized on a 2D grid in spherical polar coordinates and are solved by means of a Newton-Raphson iteration using a block elimination scheme to solve the diagonally dominant, sparse linear system arising within each iteration step. The relativistic hydrodynamics equations are formulated as a rst-order flux-conservative hyperbolic system and are integrated using high-resolution shock-capturing schemes based on Riemann solvers. We assess the quality of the conformally flat metric approximation for relativistic core collapse and present a comprehensive set of tests that the code successfully passed. The tests include relativistic shock tubes, the preservation of the rotation prole and of the equilibrium of rapidly and dierentially rotating neutron stars (approximated as rotating polytropes), spherical relativistic core collapse, and the conservation of rest-mass and angular momentum in dynamic spacetimes. The application of the code to relativistic rotational core collapse, with emphasis on the gravitational waveform signature, is presented in an accompanying paper.


Physical Review Letters | 2007

Generic Gravitational Wave Signals from the Collapse of Rotating Stellar Cores

Harald Dimmelmeier; Christian D. Ott; Hans-Thomas Janka; Andreas Marek; Ewald Müller

We perform general relativistic (GR) simulations of stellar core collapse to a protoneutron star, using a microphysical equation of state (EOS) and an approximation of deleptonization. We show that for a wide range of rotation rates and profiles the gravitational-wave (GW) burst signals from the core bounce are generic, known as type I. In our systematic study, using both GR and Newtonian gravity, we identify and quantify the influence of rotation, the EOS, and deleptonization on this result. Such a generic type of signal templates will facilitate a more efficient search in current and future GW detectors of both interferometric and resonant type.


Astronomy and Astrophysics | 2006

Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

M. Obergaulinger; Miguel-Ángel Aloy; Harald Dimmelmeier; Ewald Müller

We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (∼10 15 G at the surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification, the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in the Newtonian case, sufficiently strong magnetic fields slow down the core’s rotation and trigger a secular contraction phase to higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and <100 kHz denotes the generation of a jet-like hydromagnetic outflow.


Classical and Quantum Gravity | 2007

Rotating collapse of stellar iron cores in general relativity

Christian D. Ott; Harald Dimmelmeier; Andreas Marek; Hans-Thomas Janka; Burkhard Zink; Ian Hawke

We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ~920–930 Hz over several tens of milliseconds.


The Astrophysical Journal | 2001

Gravitational Waves from Relativistic Rotational Core Collapse

Harald Dimmelmeier; José A. Font; Ewald Müller

We present results from simulations of axisymmetric relativistic rotational core collapse. The general relativistic hydrodynamic equations are formulated in flux-conservative form and solved using a high-resolution shock-capturing scheme. The Einstein equations are solved assuming a conformally flat 3-metric, and the quadrupole formula is used to extract waveforms of the gravitational radiation emitted during the collapse. A comparison of our results with those of Newtonian simulations shows that the wave amplitudes agree within 30%. Surprisingly, in some cases, relativistic effects actually diminish the amplitude of the gravitational wave signal. We further find that the parameter range of models suffering multiple coherent bounces due to centrifugal forces is considerably smaller than in Newtonian simulations.


Astronomy and Astrophysics | 2007

General relativistic simulations of passive-magneto-rotational core collapse with microphysics

Pablo Cerdá-Durán; José A. Font; Harald Dimmelmeier

This paper presents results from axisymmetric simulations of magneto-rotational stellar core collapse to neutron stars in general relativity using the passive field approximation for the magnetic field. These simulations are performed using a new general relativistic numerical code specifically designed to study this astrophysical scenario. The code is an extension of an existing (and thoroughly tested) hydrodynamics code, which has been applied in the recent past to study relativistic rotational core collapse. It is based on the conformally-flat approximation of Einstein’s field equations and conservative formulations of the magneto-hydrodynamics equations. The code has been recently upgraded to incorporate a tabulated, microphysical equation of state and an approximate deleptonization scheme. This allows us to perform the most realistic simulations of magneto-rotational core collapse to date, which are compared with simulations employing a simplified (hybrid) equation of state, widely used in the relativistic core collapse community. Furthermore, state-of-the-art (unmagnetized) initial models from stellar evolution are used. In general, stellar evolution models predict weak magnetic fields in the progenitors, which justifies our simplification of performing the computations under the approach that we call the passive field approximation for the magnetic field. Our results show that for the core collapse models with microphysics the saturation of the magnetic field cannot be reached within dynamical time scales by winding up the poloidal magnetic field into a toroidal one. We estimate the effect of other amplification mechanisms including the magneto-rotational instability (MRI) and several types of dynamos. We conclude that for progenitors with astrophysically expected (i.e. weak) magnetic fields, the MRI is the only mechanism that could amplify the magnetic field on dynamical time scales. The uncertainties about the strength of the magnetic field at which the MRI saturates are discussed. All our microphysical models exhibit post-bounce convective overturn in regions surrounding the inner part of the proto-neutron star. Since this has a potential impact on enhancing the MRI, it deserves further investigation with more accurate neutrino treatment or alternative microphysical equations of state.

Collaboration


Dive into the Harald Dimmelmeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Rezzolla

Frankfurt Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Hawke

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge