Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Ehrhardt is active.

Publication


Featured researches published by Harald Ehrhardt.


Oncogene | 2003

TRAIL induced survival and proliferation in cancer cells resistant towards trail-induced apoptosis mediated by NF-κB

Harald Ehrhardt; Simone Fulda; Irene Schmid; John Hiscott; Klaus-Michael Debatin; Irmela Jeremias

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in cancer cells. Examining primary cells of children with untreated acute leukemia, TRAIL induced apoptosis in 50% of cells, but to our surprise attenuated spontaneous apoptosis in the remaining samples or, most importantly, even mediated proliferation. We therefore examined tumor cell lines of leukemic and nonleukemic origin with apoptosis resistance towards TRAIL because of absent Caspase-8 or dysfunctional FADD. In all cell lines tested, TRAIL treatment increased cell numbers in average to 163% within 4 days and accelerated doubling time from 24 to 19 h. TRAIL-mediated proliferation was completely abrogated by blockade of NF-κB activation using proteasome inhibitors or in RIP-negative, IKKγ-negative cells or in cells overexpressing dominant-negative IκBα. Our data describe the biological significance of TRAIL-mediated activation of NF-κB in cancer cells resistant to TRAIL-mediated apoptosis: TRAIL leads to an increase in tumor cell count by a prosurvival and possibly mitogenic function. Given the promising therapeutic potential of TRAIL as a novel anticancer drug, TRAIL-mediated survival or proliferation of target cells may restrict its use to apoptosis-sensitive tumors.


Leukemia | 2004

Betulinic acid-induced apoptosis in leukemia cells

Harald Ehrhardt; Simone Fulda; M Führer; K. M. Debatin; Irmela Jeremias

Betulinic acid (BA), a natural component isolated from Birch trees, effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. Here, we show that BA-induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, BA was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. No crossresistances were found between BA and any cytotoxic drug. Intracellular apoptosis signaling in leukemia tumor cells paralleled the pathway found in neuroectodermal cells involving caspases, but not death receptors. In isolated mitochondria, BA induced release of both cytochrome c and Smac. Taken together, BA potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia.


Cancer Research | 2005

Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Mediated Proliferation of Tumor Cells with Receptor-Proximal Apoptosis Defects

Eva Baader; Agnieszka Toloczko; Uta Fuchs; Irene Schmid; Christian Beltinger; Harald Ehrhardt; Klaus-Michael Debatin; Irmela Jeremias

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) might represent a future cytotoxic drug to treat cancer as it induces apoptosis in tumor cells without toxicity in animal trials. We recently described that in contrast to apoptosis, TRAIL mediates tumor cell survival and proliferation in certain tumor cells. Here we studied the effect of TRAIL on 18 cell lines and 53 primary leukemia cells and classified these tumor cells into four groups: TRAIL, anti-DR4 or anti-DR5 induced apoptosis in group A cells, whereas they had no effect on group 0 cells and mediated proliferation in group P cells. To our surprise, TRAIL induced simultaneous apoptosis and proliferation in group AP cells. More than 20% of all cells tested belonged to group P and showed TRAIL-mediated proliferation even in the presence of certain cytotoxic drugs but not inhibitors of nuclear factor-kappaB. Transfection with B-cell leukemia/lymphoma protein 2 transformed group A cells into group 0 cells, whereas transfection with Fas-associated polypeptide with death domain (FADD)-like interleukin-1-converting enzyme-inhibitory protein (FLIP) transformed them into group AP cells. Loss of caspase-8 or transfection of dominant-negative FADD transformed group A cells into group P cells. Taken together, our data suggest that proliferation is a frequent effect of TRAIL on tumor cells, which is related to receptor-proximal apoptosis defects at the level of the death-inducing signaling complex and should be prevented during antitumor therapy with TRAIL.


Oncogene | 2008

Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells.

Harald Ehrhardt; Häcker S; Wittmann S; Maurer M; Borkhardt A; Toloczko A; K. M. Debatin; Simone Fulda; Irmela Jeremias

Apoptosis resistance is crucially involved in cancer development and progression, represents the leading cause for failure of anticancer therapy and is caused, for example, by downregulation of proapoptotic intracellular signaling molecules such as caspase-8. We found that the cytotoxic drugs methotrexate (MTX) and 5-fluorouracil (5-FU) were both able to sensitize resistant tumor cells for induction of apoptosis by p53-mediated upregulation of caspase-8. Increase in caspase-8 messenger RNA and protein expression disabled tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced proliferation and restored sensitivity toward TRAIL-induced apoptosis which was inhibited by transfection of p53 decoy oligonucleotides, p53 shRNA and caspase-8 shRNA. Upregulation of caspase-8 and sensitization toward TRAIL-induced apoptosis was found both in a broad panel of tumor cell lines with downregulated caspase-8 and in TRAIL-resistant primary tumor cells of children with acute leukemia. Taken together, we have identified caspase-8 as an important p53 target gene regulated by cytotoxic drugs. These findings highlight a new drug-induced modulation of physiological apoptosis pathways, which may be involved in successful anticancer therapy using MTX and 5-FU in leukemia and solid tumors over decades.


PLOS ONE | 2012

In Vivo Imaging Enables High Resolution Preclinical Trials on Patients’ Leukemia Cells Growing in Mice

Nadia Terziyska; Catarina Castro Alves; Volker Groiss; Katja U. Schneider; Katarina Farkasova; Manfred Ogris; Ernst Wagner; Harald Ehrhardt; Renier J. Brentjens; Udo zur Stadt; Martin A. Horstmann; Leticia Quintanilla-Martinez; Irmela Jeremias

Background Xenograft mouse models represent helpful tools for preclinical studies on human tumors. For modeling the complexity of the human disease, primary tumor cells are by far superior to established cell lines. As qualified exemplary model, patients’ acute lymphoblastic leukemia cells reliably engraft in mice inducing orthotopic disseminated leukemia closely resembling the disease in men. Unfortunately, disease monitoring of acute lymphoblastic leukemia in mice is hampered by lack of a suitable readout parameter. Design and Methods Patients’ acute lymphoblastic leukemia cells were lentivirally transduced to express the membrane-bound form of Gaussia luciferase. In vivo imaging was established in individual patients’ leukemias and extensively validated. Results Bioluminescence in vivo imaging enabled reliable and continuous follow-up of individual mice. Light emission strictly correlated to post mortem quantification of leukemic burden and revealed a logarithmic, time and cell number dependent growth pattern. Imaging conveniently quantified frequencies of leukemia initiating cells in limiting dilution transplantation assays. Upon detecting a single leukemia cell within more than 10,000 bone marrow cells, imaging enabled monitoring minimal residual disease, time to tumor re-growth and relapse. Imaging quantified therapy effects precisely and with low variances, discriminating treatment failure from partial and complete responses. Conclusions For the first time, we characterized in detail how in vivo imaging reforms preclinical studies on patient-derived tumors upon increasing monitoring resolution. In the future, in vivo imaging will enable performing precise preclinical studies on a broad range of highly demanding clinical challenges, such as treatment failure, resistance in leukemia initiating cells, minimal residual disease and relapse.


Cell Death and Disease | 2013

Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

Harald Ehrhardt; Franziska Wachter; Michaela Grunert; Irmela Jeremias

Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease.


Blood | 2011

Optimized anti-tumor effects of anthracyclines plus Vinca alkaloids using a novel, mechanism-based application schedule.

Harald Ehrhardt; David Schrembs; Christian Moritz; Franziska Wachter; Subrata Haldar; Ulrike Graubner; Michaela Nathrath; Irmela Jeremias

Application of anthracyclines and Vinca alkaloids on the same day represents a hallmark of polychemotherapy protocols for hematopoietic malignancies. Here we show, for the first time, that both drugs might act most efficiently if they are applied on different days. Proof-of-concept studies in 18 cell lines revealed that anthracyclines inhibited cell death by Vinca alkaloids in 83% of cell lines. Importantly, in a preclinical mouse model, doxorubicin reduced the anti-tumor effect of vincristine. Both drugs acted in a sequence-dependent manner and the strongest anti-tumor effect was obtained if both drugs were applied on different days. Most notably for clinical relevance, in 34% of 35 fresh primary childhood leukemia cells tested in vitro, doxorubicin reduced the anti-tumor effect of vincristine. As underlying mechanism, doxorubicin activated p53, p53 induced cell-cycle arrest, and cell-cycle arrest disabled inactivation of antiapoptotic Bcl-2 family members by vincristine; therefore, vincristine was unable to activate downstream apoptosis signaling. As molecular proof, antagonism was rescued by knockdown of p53, whereas knockdown of cyclin A inhibited vincristine-induced apoptosis. Our data suggest evaluating anthracyclines and Vinca alkaloids on different days in future trials. Selecting drug combinations based on mechanistic understanding represents a novel conceptional strategy for potent polychemotherapy protocols.


Molecular and Cellular Pediatrics | 2016

Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development.

Tayyab Shahzad; Sarah Radajewski; Cho-Ming Chao; Saverio Bellusci; Harald Ehrhardt

Bronchopulmonary dysplasia is a chronic lung disease of preterm infants. It is caused by the disturbance of physiologic lung development mainly in the saccular stage with lifelong restrictions of pulmonary function and an increased risk of abnormal somatic and psychomotor development. The contributors to this disease’s entity are multifactorial with pre- and postnatal origin. Central to the pathogenesis of bronchopulmonary is the induction of a massive pulmonary inflammatory response due to mechanical ventilation and oxygen toxicity. The extent of the pro-inflammatory reaction and the disturbance of further alveolar growth and vasculogenesis vary largely and can be modified by prenatal infections, antenatal steroids, and surfactant application.This minireview summarizes the important recent research findings on the pulmonary inflammatory reaction obtained in patient cohorts and in experimental models. Unfortunately, recent changes in clinical practice based on these findings had only limited impact on the incidence of bronchopulmonary dysplasia.


Clinical Cancer Research | 2011

Important Role of Caspase-8 for Chemosensitivity of ALL Cells

Harald Ehrhardt; Franziska Wachter; Martina Maurer; Karsten Stahnke; Irmela Jeremias

Purpose: Sensitivity of tumor cells toward chemotherapy mainly determines the prognosis of patients suffering from acute lymphoblastic leukemia (ALL); nevertheless, underlying mechanisms regulating chemosensitivity remain poorly understood. Here, we aimed at characterizing the role of caspase-8 for chemosensitivity of B- and T-ALL cells. Experimental Design: Primary tumor cells from children with ALL were evaluated for expression levels of the caspase-8 protein, were amplified in nonobese diabetic/severe combined immunodeficient mice, transfected with siRNA, and evaluated for their chemosensitivity in vitro. Results: Effective cell death in B- and T-ALL cells depended on the presence of caspase-8 for the majority of cytotoxic drugs routinely used in antileukemia treatment. Caspase-8 was activated independently from extrinsic apoptosis signaling. Accordingly in primary ALL cells, the expression level of caspase-8 protein correlated with cell death sensitivity toward defined cytotoxic drugs in vitro. In the subgroup of primary ALL cells, with low expression of caspase-8, methotrexate (MTX) upregulated the expression of caspase-8 mediated by the transcription factor p53, suggesting epigenetic silencing of caspase-8. RNA interference in patient-derived B- and T-ALL cells revealed that effective cell death induction by most routine drug combinations involving MTX depended on the presence of caspase-8. Conclusion: Our results indicate that caspase-8 is crucial for the high antileukemic efficiency of numerous routine cytotoxic drugs. Reexpression of epigenetically downregulated caspase-8 represents a promising approach to increase efficiency of antileukemic therapy. Clin Cancer Res; 17(24); 7605–13. ©2011 AACR.


Cell Death and Disease | 2012

NOXA as critical mediator for drug combinations in polychemotherapy.

Harald Ehrhardt; Ines Höfig; Franziska Wachter; Petra Obexer; Simone Fulda; Nadia Terziyska; Irmela Jeremias

During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug combinations, underlying signaling mechanisms responsible for positive drug–drug interactions remain elusive. Here, we prove a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens.

Collaboration


Dive into the Harald Ehrhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Eickelberg

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irmela Jeremias

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge