Harald Forbert
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Forbert.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Matthias Heyden; Jian Sun; Stefan Funkner; Gerald Mathias; Harald Forbert; Martina Havenith; Dominik Marx
Solvation of molecules in water is at the heart of a myriad of molecular phenomena and of crucial importance to understanding such diverse issues as chemical reactivity or biomolecular function. Complementing well-established approaches, it has been shown that laser spectroscopy in the THz frequency domain offers new insights into hydration from small solutes to proteins. Upon introducing spatially-resolved analyses of the absorption cross section by simulations, the sensitivity of THz spectroscopy is traced back to characteristic distance-dependent modulations of absorption intensities for bulk water. The prominent peak at ≈200 cm-1 is dominated by first-shell dynamics, whereas a concerted motion involving the second solvation shell contributes most significantly to the absorption at about 80 cm-1 ≈2.4 THz. The latter can be understood in terms of an umbrella-like motion of two hydrogen-bonded tetrahedra along the connecting hydrogen bond axis. Thus, a modification of the hydrogen bond network, e.g., due to the presence of a solute, is expected to affect vibrational motion and THz absorption intensity at least on a length scale that corresponds to two layers of solvating water molecules. This result provides a molecular mechanism explaining the experimentally determined sensitivity of absorption changes in the THz domain in terms of distinct, solute-induced dynamical properties in solvation shells of (bio)molecules—even in the absence of well-defined resonances.
Science | 2009
Anna Gutberlet; Gerhard Schwaab; Oezguer Birer; Marco Masia; Anna Kaczmarek; Harald Forbert; Martina Havenith; Dominik Marx
Minimally Acidic Acidity is usually construed in the context of a bulk liquid solvent: billions of trillions of molecules such as HCl, added to hundreds of billions of trillions of water molecules. What happens under sparser conditions, for example, in atmospheric or interstellar environments, when a single HCl molecule might interact with just three or four water molecules? Gutberlet et al. (p. 1545; see the Perspective by Zwier) explored this question using theoretical simulations together with vibrational spectroscopy in ultracold helium droplets that effectively isolated small aqueous HCl clusters. HCl remained intact upon solvation by one, two, or three water molecules. Dissociation into an ion pair, as occurs in bulk water, required the approach of a fourth water molecule and was facilitated by the geometry of the existing (H2O)3 cluster. Just four water molecules are sufficient to dissolve the acid HCl into a charged ion pair of proton and chloride. Acid dissociation and the subsequent solvation of the charged fragments at ultracold temperatures in nanoenvironments, as distinct from ambient bulk water, are relevant to atmospheric and interstellar chemistry but remain poorly understood. Here we report the experimental observation of a nanoscopic aqueous droplet of acid formed within a superfluid helium cluster at 0.37 kelvin. High-resolution mass-selective infrared laser spectroscopy reveals that successive aggregation of the acid HCl with water molecules, HCl(H2O)n, readily results in the formation of hydronium at n = 4. Accompanying ab initio simulations show that undissociated clusters assemble by stepwise water molecule addition in electrostatic steering arrangements up to n = 3. Adding a fourth water molecule to the ringlike undissociated HCl(H2O)3 then spontaneously yields the compact dissociated H3O+(H2O)3Cl− ion pair. This aggregation mechanism bypasses deep local energy minima on the n = 4 potential energy surface and offers a general paradigm for reactivity at ultracold temperatures.
Journal of Chemical Physics | 2009
Alexander Witt; Sergei D. Ivanov; Motoyuki Shiga; Harald Forbert; Dominik Marx
Centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) are two conceptually distinct extensions of path integral molecular dynamics that are able to generate approximate quantum dynamics of complex molecular systems. Both methods can be used to compute quasiclassical time correlation functions which have direct application in molecular spectroscopy; in particular, to infrared spectroscopy via dipole autocorrelation functions. The performance of both methods for computing vibrational spectra of several simple but representative molecular model systems is investigated systematically as a function of temperature and isotopic substitution. In this context both CMD and RPMD feature intrinsic problems which are quantified and investigated in detail. Based on the obtained results guidelines for using CMD and RPMD to compute infrared spectra of molecular systems are provided.
Journal of the American Chemical Society | 2014
Jian Sun; Gudrun Niehues; Harald Forbert; Dominique Decka; Gerhard Schwaab; Dominik Marx; Martina Havenith
THz spectroscopy of aqueous solutions has been established as of recently to be a valuable and complementary experimental tool to provide direct insights into the solute-solvent coupling due to hydrogen-bond dynamics involving interfacial water. Despite much experimental progress, understanding THz spectra in terms of molecular motions, akin to mid-infrared spectra, still remains elusive. Here, using the osmoprotectant glycine as a showcase, we demonstrate how this can be achieved by combining THz absorption spectroscopy and ab initio molecular dynamics. The experimental THz spectrum is characterized by broad yet clearly discernible peaks. Based on substantial extensions of available mode-specific decomposition schemes, the experimental spectrum can be reproduced by theory and assigned on an essentially quantitative level. This joint effort reveals an unexpectedly clear picture of the individual contributions of molecular motion to the THz absorption spectrum in terms of distinct modes stemming from intramolecular vibrations, rigid-body-like hindered rotational and translational motion, and specific couplings to interfacial water molecules. The assignment is confirmed by the peak shifts observed in the THz spectrum of deuterated glycine in heavy water, which allow us to separate the distinct modes experimentally.
Journal of Physical Chemistry Letters | 2012
Matthias Heyden; Jian Sun; Harald Forbert; Gerald Mathias; Martina Havenith; Dominik Marx
The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.
Journal of Chemical Physics | 2013
Melanie Letzner; Sarah Gruen; Daniel Habig; Kenny Hanke; Torsten Endres; Pablo Nieto; Gerhard Schwaab; Łukasz Walewski; Miriam Wollenhaupt; Harald Forbert; Dominik Marx; Martina Havenith
We report a detailed study on the IR spectroscopy of HCl-water complexes in superfluid helium nanodroplets in the frequency range from 2660 to 2675 cm(-1). We have recorded spectra of HCl-H2(16)O as well as of HCl-H2(18)O complexes and compared these results with theoretical predictions. In addition, we have carried out mass-selective intensity measurements as a function of partial pressure of HCl as well as of H2(18)O (pick-up curves). The results support a scenario where the IR-absorption in this part of the spectrum contains contributions from undissociated as well as from dissociated clusters with Cl(-)(H2O)3(H3O)(+) being the smallest dissociated complex. These findings are corroborated by additional electric field measurements yielding the orientation of the vibrational transition moment with respect to the permanent dipole moment. As a result we are able to assign a broad absorption band starting at 2675 cm(-1) to dissociated HCl-water clusters (HCl)1(H2O)n with n ≥ 4. The two narrow absorption lines at 2667.9 cm(-1) and 2670 cm(-1) are assigned to an undissociated cluster, in agreement with previous studies.
Computer Physics Communications | 2003
Harald Forbert; Dominik Marx
Abstract The exact calculation of permanents of n×n matrices is a non-polynomial computational problem as a function of n. An efficient deterministic algorithm is presented that allows for the approximate calculation of permanents obtained from sparse positive matrices within controllable precision bounds. The upper and lower bounds can be made arbitrarily close to each other and the algorithm outperforms existing ones for sufficiently large matrices.
Journal of Chemical Physics | 2013
Maciej Śmiechowski; Harald Forbert; Dominik Marx
Ionic hydration is of fundamental relevance from chemical reactivity in aqueous solution to biomolecular function at physiological conditions. Vibrational spectroscopy belongs to the most widely used experimental methods in studies of solvation phenomena. There is, however, still limited molecular understanding as to how the vibrational response of solutions is modulated by the presence of solvation shells around solutes, i.e., by interfacial water. Liquid-state THz spectroscopy has been demonstrated to be able to detect even small solute-induced changes of the hydrogen bond dynamics at the solute-water interface. In many cases it reveals rather long-ranged dynamical correlations around solutes, involving many solvent molecules, that can be tackled theoretically by analyzing vibrational spectra in a distance-resolved manner. Here, several spatial decomposition schemes for infrared spectra are used to reveal the distinct distance- and frequency-dependent contributions of the solvation shells to the spectral response in aqueous solutions of Li(+) and F(-). The importance of an explicit representation of the solutes electronic structure for the proper description of solute-solvent polarization effects is demonstrated. The solvents response to the presence of the solute is systematically disentangled and reveals important differences between the spectral responses due to intra- and intermolecular motion as probed in the mid- and far-infrared spectral windows, respectively.
Computer Physics Communications | 2014
Łukasz Walewski; Harald Forbert; Dominik Marx
Abstract A hybrid ab initio path integral molecular dynamics/bosonic path integral Monte Carlo simulation method has been developed, implemented and tested, which allows for the reactive simulations of molecules, clusters or complexes solvated by superfluid 4 He. The simulation takes into account “on-the-fly” the electronic structure and thus the chemical reactivity of the solutes, in conjunction with the Bose–Einstein statistics, and thus the superfluid character of this peculiar solvent. This enables investigations into cryochemical reactions taking place in helium nanodroplets, such as those used in helium nanodroplet isolation (HENDI) spectroscopy.
Physical Review Letters | 2016
Maciej Śmiechowski; Christoph Schran; Harald Forbert; Dominik Marx
Molecular dynamics simulations of supercritical water reveal distinctly different distance-dependent modulations of dipolar response and correlations in particle motion compared to ambient conditions. The strongly perturbed H-bond network of water at supercritical conditions allows for considerable translational and rotational freedom of individual molecules. These changes give rise to substantially different infrared spectra and vibrational density of states at THz frequencies for densities above and below the Widom line that separates percolating liquidlike and clustered gaslike supercritical water.