Harald Goering
Bundesanstalt für Materialforschung und -prüfung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Goering.
Journal of Non-crystalline Solids | 2002
Andreas Schönhals; Harald Goering; Ch. Schick
Dielectric spectroscopy and temperature modulated DSC are employed to study the molecular dynamics of oligomeric poly(propylene glycol) (PPG) melts of different molecular weights confined to nanoporous glasses (pore sizes 2.5, 5.0, 7.5 and 20 nm). Moreover the results obtained for the polymer are compared with the corresponding monomer. For large pore sizes an acceleration of the segmental dynamics compared to the bulk state is observed which is already known for low molecular-weight glass forming liquids. For smaller pore sizes the molecular dynamics is slower than in the bulk. The observed behavior is nearly independent of the molar mass of the polymer and of the treatment of internal glass surfaces. The experimental results are discussed in the frame of an interplay of confinement and adsorption effects. Moreover a length scale of about 1.6 nm is estimated as a minimal length scale for the cooperativity for the glass transition. In addition to the α-relaxation the whole chain dynamics (normal mode relaxation) can be measured by dielectric spectroscopy because PPG has a dipole component parallel to the chain. For virgin internal surfaces the relaxation rate of the normal mode relaxation is shifted dramatically to lower relaxation rates. That can be explained by adsorption effects. For treated surfaces this effect is strongly reduced and it is concluded that also in this case the chain dynamics are influenced by geometric (confinement) effects.
Journal of Physics: Condensed Matter | 2003
Andreas Schönhals; Harald Goering; K.-W. Brzezinka; Ch Schick
Dielectric spectroscopy and temperature-modulated differential scanning calorimetry are employed to study the molecular dynamics of oligomeric poly(propylene glycol) (PPG) melts of different molecular weights confined to nanoporous glasses (pore sizes 2.5, 5.0, 7.5 and 20 nm). Moreover, the results obtained for the polymers are compared with those for the corresponding monomer. The experimental results are discussed in the framework of the interplay of confinement and adsorption effects. For large pore sizes }5~{\mathrm {nm}})
Polymer Chemistry | 2010
Sebastian Dr. Wohlrab; Andreas Schönhals; Harald Goering; Jörg Friedrich
>(> 5 nm) a speeding up of the molecular dynamics is observed (the confinement effect), whereas for small pore sizes (< 5 nm) a slowing down of the segmental fluctuations is found (the adsorption effect). In addition, a minimal length scale for the glass transition of 1.6 nm is estimated for PPG confined in nanoporous glasses. This supports the idea that the molecular motions responsible for the glassy dynamics must be describable by a characteristic length scale. Polarized Raman scattering investigations are carried out to investigate the conformations of the macromolecules inside the pores. These experiments show that the confined polymer chains are locally stretched. This effect increases with decreasing pore size.
Molecular Crystals and Liquid Crystals | 2008
Stefan Frunza; Andreas Schönhals; Harald Goering; Doina Manaila-Maximean; Traian Beica; Ligia Frunza; R. Moldovan
Nanoparticulate networks as fillers for polymer based nanocomposites offer an optimized, surfactant free distribution of the inorganic component. Additionally, their non-aggregated but interconnected nanoparticulate subunits can lead to new properties owing to special inherent solid state properties and/or spacial restrictions to the polymeric parts. In particular, polymer nanocomposites based on poly(methyl methacrylate) (PMMA) or poly(hydroxyethyl methacrylate) (PHEMA), filled with different nanoparticulate networks of AlOOH were synthesized using two advanced synthesis techniques. An ex situ method, in which a preformed AlOOH-gel was solvent exchanged by methyl methacrylate (MMA) and an in situ method, in which the AlOOH scaffold was prepared within hydroxyethyl methacrylate (HEMA), have been used to produce the materials described here through polymerization. On the MMA based composites the particles were removed by etching, yielding porous polymers. Promising for a broad variety of crystallisable networks within polymers, the phase transition of amorphous AlOOH within PMMA towards crystalline boehmite was performed using a hydrothermal method. The materials were characterized using transmission electron microscopy, X-ray diffraction, gel permeation chromatography, differential scanning calorimetry, IR-spectroscopy, UV/Vis spectroscopy and hardness measurements. Special material properties were investigated using thermogravimetry, thermomechanical analysis and dynamic mechanical analysis. Furthermore, interactions between PMMA segments and the AlOOH network were detailed studied using dielectric spectroscopy.
Materials Testing-Materials and Components Technology and Application | 2006
Simone Krüger; Wolfgang Stark; Harald Goering; Uwe Michel
A composite prepared from aerosil A380 and the liquid crystal (LC) 4-hexyl-4′-cyanophenyl benzoate (CP6B) was investigated by broadband dielectric spectroscopy in a large temperature range. The selected high silica density (ca. 7 g aerosil/1 g of CP6B) allows the observation of a thin layer (two-monolayer structure) adsorbed on the surface of the silica particles. For the composite one relaxation process is observed at frequencies much lower than that of the processes found for bulk CP6B. It is assigned to the dynamics of the molecules in the surface layer. The temperature dependence of its relaxation rates obeys the Vogel–Fulcher–Tammann law, which is characteristic for glass-forming liquids. The quasi 2D character of the observed glassy dynamics in the surface layer is discussed. The temperature dependence of the CP6B relaxation in the composite is compared with that of related hexylcyanobiphenyl molecules in the surface layer of aerosil composite with a similar concentration.
MRS Proceedings | 2003
Andreas Schönhals; Harald Goering; Christoph Schick; B. Frick; Reiner Zorn
Kurzfassung Angesichts der spezifischen Bedeutung der Aushärtung von Phenolharzen für ihre Eigenschaften als Ingenieurwerkstoffe besteht großes Interesse an deren quantitativer Charakterisierung. Mittels DSC-Messungen unter hohem Druck (HP-DSC) kann die Vernetzungsreaktion der Phenolharzformmassen durch die Unterdrückung der Verdampfung niedermolekularer Substanzen ohne störende Überlagerungen verfolgt werden. Mittels verschiedener Vernetzungsgrade können die Einflussparameter der Aufheizrate und der Nachtemperung optimiert werden. Die Messergebnisse ermöglichen eine Modellierung der Reaktionskinetik mit dem Ziel einer verbesserten Prozessführung und Qualitätskontrolle in der industriellen Praxis.
European Physical Journal E | 2003
Andreas Schönhals; Harald Goering; Ch Schick; B. Frick; R. Zorn
The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DK), temperature modulated DSC (TMDSC) and neutron scattering (NS). DK and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. At a pore size of 5 nm the temperature dependence of the relaxations times changes from a Vogel-Fulcher-Tammann like behavior to an Arrhenius one. At the same pore size Dcp vanishes. These results give strong support that the glass transition has to be characterized by an inherent length scale of the relevant molecular motions. Quasielastic neutron scattering experiments reveal a strong change even in the microscopic dynamic.
Macromolecules | 2005
Martin Böhning; Harald Goering; Andreas Fritz; Klaus-W. Brzezinka; Gamal Turky; and Andreas Schönhals; Bernhard Schartel
Journal of Non-crystalline Solids | 2005
Andreas Schönhals; Harald Goering; Ch. Schick; B. Frick; Reiner Zorn
Macromolecules | 2007
Ning Hao; Martin Böhning; Harald Goering; Andreas Schönhals