Harald Hutter
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Hutter.
Aging Cell | 2008
Michael Morcos; Xueliang Du; Friederike Pfisterer; Harald Hutter; Ahmed Sayed; Paul J. Thornalley; Naila Ahmed; John W. Baynes; Suzanne R. Thorpe; Georgi Kukudov; Andreas Schlotterer; Farastuk Bozorgmehr; Randa F. Abd el Baki; David M. Stern; Frank Moehrlen; Youssef Ibrahim; Dimitrios Oikonomou; A. Hamann; Christian Becker; Martin Zeier; Vedat Schwenger; Nexhat Miftari; Per M. Humpert; Hans-Peter Hammes; Markus W. Buechler; Angelika Bierhaus; Michael Brownlee; Peter P. Nawroth
Studies of mutations affecting lifespan in Caenorhabditis elegans show that mitochondrial generation of reactive oxygen species (ROS) plays a major causative role in organismal aging. Here, we describe a novel mechanism for regulating mitochondrial ROS production and lifespan in C. elegans: progressive mitochondrial protein modification by the glycolysis‐derived dicarbonyl metabolite methylglyoxal (MG). We demonstrate that the activity of glyoxalase‐1, an enzyme detoxifying MG, is markedly reduced with age despite unchanged levels of glyoxalase‐1 mRNA. The decrease in enzymatic activity promotes accumulation of MG‐derived adducts and oxidative stress markers, which cause further inhibition of glyoxalase‐1 expression. Over‐expression of the C. elegans glyoxalase‐1 orthologue CeGly decreases MG modifications of mitochondrial proteins and mitochondrial ROS production, and prolongs C. elegans lifespan. In contrast, knock‐down of CeGly increases MG modifications of mitochondrial proteins and mitochondrial ROS production, and decreases C. elegans lifespan.
Genome Research | 2013
Owen Thompson; Mark L. Edgley; Pnina Strasbourger; Stephane Flibotte; Brent Ewing; Ryan Adair; Vinci Au; Iasha Chaudhry; Lisa Fernando; Harald Hutter; Armelle Kieffer; Joanne Lau; Norris Lee; Angela Miller; Greta Raymant; Bin Shen; Jay Shendure; Jon Taylor; Emily H. Turner; LaDeana W. Hillier; Donald G. Moerman; Robert H. Waterston
We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worms more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website.
Diabetes | 2009
Andreas Schlotterer; Georgi Kukudov; Farastuk Bozorgmehr; Harald Hutter; Xueliang Du; Dimitrios Oikonomou; Youssef Ibrahim; Friederike Pfisterer; Naila Rabbani; Paul J. Thornalley; Ahmed Sayed; Thomas Fleming; Per M. Humpert; Vedat Schwenger; Martin Zeier; A. Hamann; David M. Stern; Michael Brownlee; Angelika Bierhaus; Peter P. Nawroth; Michael Morcos
OBJECTIVE Establishing Caenorhabditis elegans as a model for glucose toxicity–mediated life span reduction. RESEARCH DESIGN AND METHODS C. elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients. The effects of high glucose on life span, glyoxalase-1 activity, advanced glycation end products (AGEs), and reactive oxygen species (ROS) formation and on mitochondrial function were studied. RESULTS High glucose conditions reduced mean life span from 18.5 ± 0.4 to 16.5 ± 0.6 days and maximum life span from 25.9 ± 0.4 to 23.2 ± 0.4 days, independent of glucose effects on cuticle or bacterial metabolization of glucose. The formation of methylglyoxal-modified mitochondrial proteins and ROS was significantly increased by high glucose conditions and reduced by mitochondrial uncoupling and complex IIIQo inhibition. Overexpression of the methylglyoxal–detoxifying enzyme glyoxalase-1 attenuated the life-shortening effect of glucose by reducing AGE accumulation (by 65%) and ROS formation (by 50%) and restored mean (16.5 ± 0.6 to 20.6 ± 0.4 days) and maximum life span (23.2 ± 0.4 to 27.7 ± 2.3 days). In contrast, inhibition of glyoxalase-1 by RNAi further reduced mean (16.5 ± 0.6 to 13.9 ± 0.7 days) and maximum life span (23.2 ± 0.4 to 20.3 ± 1.1 days). The life span reduction by glyoxalase-1 inhibition was independent from the insulin signaling pathway because high glucose conditions also affected daf-2 knockdown animals in a similar manner. CONCLUSIONS C. elegans is a suitable model organism to study glucose toxicity, in which high glucose conditions limit the life span by increasing ROS formation and AGE modification of mitochondrial proteins in a daf-2 independent manner. Most importantly, glucose toxicity can be prevented by improving glyoxalase-1–dependent methylglyoxal detoxification or preventing mitochondrial dysfunction.
Development | 2003
Cheng−Chen Huang; David H. Hall; Edward M. Hedgecock; Gautam Kao; Vassiliki Karantza; Bruce E. Vogel; Harald Hutter; Andrew D. Chisholm; William G. Wadsworth
Laminins are heterotrimeric (α/β/γ) glycoproteins that form a major polymer within basement membranes. Different α, β andγ subunits can assemble into various laminin isoforms that have different, but often overlapping, distributions and functions. In this study, we examine the contributions of the laminin α subunits to the development of C. elegans. There are two α, one β and oneγ laminin subunit, suggesting two laminin isoforms that differ by theirα subunit assemble in C. elegans. We find that near the end of gastrulation and before other basement membrane components are detected, theα subunits are secreted between primary tissue layers and become distributed in different patterns to the surfaces of cells. Mutations in either α subunit gene cause missing or disrupted extracellular matrix where the protein normally localizes. Cell-cell adhesions are abnormal: in some cases essential cell-cell adhesions are lacking, while in other cases, cells inappropriately adhere to and invade neighboring tissues. Using electron microscopy, we observe adhesion complexes at improper cell surfaces and disoriented cytoskeletal filaments. Cells throughout the animal show defective differentiation, proliferation or migration, suggesting a general disruption of cell-cell signaling. The results suggest a receptor-mediated process localizes each secreted laminin to exposed cell surfaces and that laminin is crucial for organizing extracellular matrix, receptor and intracellular proteins at those surfaces. We propose this supramolecular architecture regulates adhesions and signaling between adjacent tissues.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Caroline Schmitz; Parag Kinge; Harald Hutter
The navigation of axons toward their targets is a highly dynamic and precisely regulated process during nervous system development. The molecular basis of this navigation process is only partly understood. In Caenorhabditis elegans, we isolated the RNAi-hypersensitive strain nre-1(hd20) lin-15b(hd126), which allows us to phenocopy axon guidance defects of known genes by feeding RNAi. We used this mutant strain to systematically screen 4,577 genes on chromosomes I and III for axon guidance phenotypes. We identified 93 genes whose down-regulation led to penetrant ventral cord fasciculation defects or motoneuron commissure outgrowth defects. These genes encode various classes of proteins, ranging from secreted or putative cell surface proteins to transcription factors controlling gene expression. A majority of the genes is evolutionary conserved and previously uncharacterized. In addition, we found axon guidance functions for known genes like pry-1, a component of the Wnt-signaling pathway, and ced-1, a receptor required for the engulfment of neurons undergoing apoptosis during development. Our screen provides insights into molecular pathways operating during the generation of neuronal circuits and provides a basis for a more detailed analysis of gene networks regulating axon navigation.
Neurobiology of Aging | 2009
Roland Brandt; Aikaterini Gergou; Irene Wacker; Thomas Fath; Harald Hutter
The microtubule-associated tau proteins become functionally and structurally altered in Alzheimers disease (AD). To analyze tau modification and its role in a non-vertebrate animal model, we produced transgenic Caenorhabditis elegans strains with a panneuronal expression of human tau and a pseudohyperphosphorylated (PHP) tau construct that mimics AD-relevant tau modification. We show that human tau in C. elegans becomes highly phosphorylated and exhibits conformational changes similar to PHP tau and human PHF tau. Both, wt tau and PHP tau induced a progressive age-dependent development of a phenotype of uncoordinated locomotion (unc) in the absence of neuronal degeneration. However, only PHP tau induced a defective pattern of motor neuron development as indicated by the presence of gaps in the dorsal cord, commissures on the wrong side and local broadening of axons. The data indicate that C. elegans is capable of highly phosphorylating human tau to an AD-like state whereas only stable disease-like tau modification induce developmental defects suggesting a specific interference of pathologic tau with intracellular mechanisms of axonal outgrowth and pathfinding.
Proceedings of the National Academy of Sciences of the United States of America | 2008
D. Ikeda; Yukan Duan; Masahiro Matsuki; Hirofumi Kunitomo; Harald Hutter; Edward M. Hedgecock; Yuichi Iino
Calsyntenins/alcadeins are type I transmembrane proteins with two extracellular cadherin domains highly expressed in mammalian brain. They form a tripartite complex with X11/X11L and APP (amyloid precursor protein) and are proteolytically processed in a similar fashion to APP. Although a genetic association of calsyntenin-2 with human memory performance has recently been reported, physiological roles and molecular functions of the protein in the nervous system are poorly understood. Here, we show that CASY-1, the Caenorhabditis elegans ortholog of calsyntenins/alcadeins, is essential for multiple types of learning. Through a genetic screen, we found that casy-1 mutants show defects in salt chemotaxis learning. casy-1 mutants also show defects in temperature learning, olfactory adaptation, and integration of two sensory signals. casy-1 is widely expressed in the nervous system. Expression of casy-1 in a single sensory neuron and at the postdevelopmental stage is sufficient for its function in salt chemotaxis learning. The fluorescent protein-tagged ectodomain of CASY-1 is released from neurons. Moreover, functional domain analyses revealed that both cytoplasmic and transmembrane domains of this protein are dispensable, whereas the ectodomain, which contains the LG/LNS-like domain, is critically required for learning. These results suggest that learning is modulated by the released ectodomain of CASY-1.
Development | 2007
Marie Diogon; Frédéric Wissler; Sophie Quintin; Yasuko Nagamatsu; Satis Sookhareea; Frédéric Landmann; Harald Hutter; Nicolas Vitale; Michel Labouesse
Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First, time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.
Development | 2010
Andreas Steimel; Lianna Wong; Elvis Huarcaya Najarro; Brian D. Ackley; Gian Garriga; Harald Hutter
Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in the ventral nerve cord (VNC) of C. elegans. Notably follower axons, which exclusively depend on pioneer axons for correct navigation, frequently separated from the pioneer. fmi-1 is the sole C. elegans ortholog of Drosophila flamingo and vertebrate Celsr genes, and this phenotype defines a new role for this important molecule in follower axon navigation. FMI-1 has a unique and strikingly conserved structure with cadherin and C-terminal G-protein coupled receptor domains and could mediate cell-cell adhesion and signaling functions. We found that follower axon navigation depended on the extracellular but not on the intracellular domain, suggesting that FMI-1 mediates primarily adhesion between pioneer and follower axons. By contrast, pioneer axon navigation required the intracellular domain, suggesting that FMI-1 acts as receptor transducing a signal in this case. Our findings indicate that FMI-1 is a cell-type dependent axon guidance factor with different domain requirements for its different functions in pioneers and followers.
Development | 2003
Harald Hutter
The ventral cord is the major longitudinal axon tract in C. elegans containing essential components of the motor circuit. Previous studies have shown that axons grow out sequentially and that there is a single pioneer for the right axon tract which is important for the correct outgrowth of follower axons. Here, the dependencies between early and late outgrowing axons in the ventral cord were studied systematically with laser ablation experiments and a detailed analysis of mutants using multi-color GFP markers. Different classes of axon were affected to a different extent when the AVG pioneer neuron was eliminated. In the majority of the animals, axons were able to grow out normally even in the absence of the pioneer, suggesting that its presence is not absolutely essential for the correct outgrowth of follower axons. The transcription factor LIN-11 was found to be essential for the differentiation and pioneering function of the AVG neuron. UNC-30 appears to play a similar role for the PVP pioneer neurons. Later outgrowing axons typically do not simply follow earlier outgrowing ones, but subtle dependencies between certain groups of early and late outgrowing axons do exist. Different groups of axons growing in the same axon bundle apparently use different combinations of guidance cues for their navigation and can navigate largely independently.