Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Schulze is active.

Publication


Featured researches published by Harald Schulze.


Science | 2007

Dynamic Visualization of Thrombopoiesis Within Bone Marrow

Tobias Junt; Harald Schulze; Zhao Chen; Steffen Massberg; Tobias Goerge; Andreas Krueger; Denisa D. Wagner; Thomas Graf; Joseph E. Italiano; Ramesh A. Shivdasani; Ulrich H. von Andrian

Platelets are generated from megakaryocytes (MKs) in mammalian bone marrow (BM) by mechanisms that remain poorly understood. Here we describe the use of multiphoton intravital microscopy in intact BM to visualize platelet generation in mice. MKs were observed as sessile cells that extended dynamic proplatelet-like protrusions into microvessels. These intravascular extensions appeared to be sheared from their transendothelial stems by flowing blood, resulting in the appearance of proplatelets in peripheral blood. In vitro, proplatelet production from differentiating MKs was enhanced by fluid shear. These results confirm the concept of proplatelet formation in vivo and are consistent with the possibility that blood flow–induced hydrodynamic shear stress is a biophysical determinant of thrombopoiesis.


American Journal of Human Genetics | 2007

Complex Inheritance Pattern Resembling Autosomal Recessive Inheritance Involving a Microdeletion in Thrombocytopenia–Absent Radius Syndrome

Eva Klopocki; Harald Schulze; Gabriele Strauß; Claus-Eric Ott; Judith G. Hall; Fabienne Trotier; Silke Fleischhauer; Lynn Greenhalgh; Ruth Newbury-Ecob; Luitgard M. Neumann; Rolf Habenicht; Rainer König; Eva Seemanova; André Mégarbané; Hans-Hilger Ropers; Reinhard Ullmann; Denise Horn; Stefan Mundlos

Thrombocytopenia-absent radius (TAR) syndrome is characterized by hypomegakaryocytic thrombocytopenia and bilateral radial aplasia in the presence of both thumbs. Other frequent associations are congenital heart disease and a high incidence of cows milk intolerance. Evidence for autosomal recessive inheritance comes from families with several affected individuals born to unaffected parents, but several other observations argue for a more complex pattern of inheritance. In this study, we describe a common interstitial microdeletion of 200 kb on chromosome 1q21.1 in all 30 investigated patients with TAR syndrome, detected by microarray-based comparative genomic hybridization. Analysis of the parents revealed that this deletion occurred de novo in 25% of affected individuals. Intriguingly, inheritance of the deletion along the maternal line as well as the paternal line was observed. The absence of this deletion in a cohort of control individuals argues for a specific role played by the microdeletion in the pathogenesis of TAR syndrome. We hypothesize that TAR syndrome is associated with a deletion on chromosome 1q21.1 but that the phenotype develops only in the presence of an additional as-yet-unknown modifier (mTAR).


Nature Genetics | 2012

Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome

Cornelis A. Albers; Dirk S. Paul; Harald Schulze; Kathleen Freson; Jonathan Stephens; Peter A. Smethurst; Jennifer Jolley; Ana Cvejic; Myrto Kostadima; Paul Bertone; Martijn H. Breuning; Najet Debili; Panos Deloukas; Rémi Favier; Janine Fiedler; Catherine M. Hobbs; Ni Huang; Graham Kiddle; Ingrid P. C. Krapels; Paquita Nurden; Claudia Ruivenkamp; Jennifer Sambrook; Kenneth Smith; Derek L. Stemple; Gabriele Strauss; Chantal Thys; Christel Van Geet; Ruth Newbury-Ecob; Willem H. Ouwehand; Cedric Ghevaert

The exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this inheritance mechanism explained 53 of 55 cases (P < 5 × 10−228) of the rare congenital malformation syndrome. Of the 53 cases with this inheritance pattern, 51 carried a submicroscopic deletion of 1q21.1 that has previously been associated with TAR, and two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in diminished RBM8A transcription in vitro and that Y14 expression is reduced in platelets from individuals with TAR. Our data implicate Y14 insufficiency and, presumably, an EJC defect as the cause of TAR syndrome.


Blood | 2010

Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow

Oliver Winter; Katrin Moser; Elodie Mohr; Dimitra Zotos; Henriette Kaminski; Martin Szyska; Katrin Roth; David M. Wong; Christof Dame; David M. Tarlinton; Harald Schulze; Ian C. M. MacLennan; Rudolf A. Manz

Long-lived plasma cells in the bone marrow produce memory antibodies that provide immune protection persisting for decades after infection or vaccination but can also contribute to autoimmune and allergic diseases. However, the composition of the microenvironmental niches that are important for the generation and maintenance of these cells is only poorly understood. Here, we demonstrate that, within the bone marrow, plasma cells interact with the platelet precursors (megakaryocytes), which produce the prominent plasma cell survival factors APRIL (a proliferation-inducing ligand) and IL-6 (interleukin-6). Accordingly, reduced numbers of immature and mature plasma cells are found in the bone marrow of mice deficient for the thrombopoietin receptor (c-mpl) that show impaired megakaryopoiesis. After immunization, accumulation of antigen-specific plasma cells in the bone marrow is disturbed in these mice. Vice versa, injection of thrombopoietin allows the accumulation and persistence of a larger number of plasma cells generated in the course of a specific immune response in wild-type mice. These results demonstrate that megakaryocytes constitute an important component of the niche for long-lived plasma cells in the bone marrow.


Journal of Clinical Investigation | 2007

An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice

Johannes Grosse; Attila Braun; David Varga-Szabo; Niklas Beyersdorf; Boris Schneider; Lutz Zeitlmann; Petra Hanke; Patricia Schropp; Silke Mühlstedt; Carolin Zorn; Michael Huber; Carolin Schmittwolf; Wolfgang Jagla; Philipp Yu; Thomas Kerkau; Harald Schulze; Michael Nehls; Bernhard Nieswandt

Changes in cytoplasmic Ca2+ levels regulate a variety of fundamental cellular functions in virtually all cells. In nonexcitable cells, a major pathway of Ca2+ entry involves receptor-mediated depletion of intracellular Ca2+ stores followed by the activation of store-operated calcium channels in the plasma membrane. We have established a mouse line expressing an activating EF hand motif mutant of stromal interaction molecule 1 (Stim1), an ER receptor recently identified as the Ca2+ sensor responsible for activation of Ca2+ release-activated (CRAC) channels in T cells, whose function in mammalian physiology is not well understood. Mice expressing mutant Stim1 had macrothrombocytopenia and an associated bleeding disorder. Basal intracellular Ca2+ levels were increased in platelets, which resulted in a preactivation state, a selective unresponsiveness to immunoreceptor tyrosine activation motif-coupled agonists, and increased platelet consumption. In contrast, basal Ca2+ levels, but not receptor-mediated responses, were affected in mutant T cells. These findings identify Stim1 as a central regulator of platelet function and suggest a cell type-specific activation or composition of the CRAC complex.


Journal of Thrombosis and Haemostasis | 2005

Mechanisms of thrombopoiesis.

Harald Schulze; Ramesh A. Shivdasani

Summary.  Megakaryocytes (MKs) expand and differentiate over several days in response to thrombopoietin (Tpo) before releasing innumerable blood platelets. The final steps in platelet assembly and release represent a unique cellular transformation that is orchestrated by a range of transcription factors, signaling molecules, and cytoskeletal elements. Here we review recent advances in the physiology and molecular basis of MK differentiation. Genome‐wide approaches, including transcriptional profiling and proteomics, have been used to identify novel platelet products and differentiation markers. The extracellular factors, stromal‐derived factor (SDF)‐1 chemokine and fibroblast growth factor (FGF)‐4 direct MK interactions with the bone marrow stroma and regulate cytokine‐independent cell maturation. An abundance of bone marrow MKs induce pathologic states, including excessive bone formation and myelofibrosis, and the basis for these effects is now better appreciated. We review the status of transcription factors that control MK differentiation, with special emphasis on nuclear factor‐erythroid 2 (NF‐E2) and its two putative target genes, β1‐tubulin and 3‐β‐hydroxysteroid reductase. MKs express steroid receptors and some estrogen ligands, which may constitute an autocrine loop in formation of proplatelets, the cytoplasmic protrusions within which nascent blood platelets are assembled. Finally, we summarize our own studies on cellular and molecular facets of proplatelet formation and place the findings within the context of outstanding questions about mechanisms of thrombopoiesis.


Blood | 2008

Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

Sunita Patel-Hett; Jennifer L. Richardson; Harald Schulze; Ksenija Drabek; Natasha A. Isaac; Karin M. Hoffmeister; Ramesh A. Shivdasani; J. Chloë Bulinski; Niels Galjart; John H. Hartwig; Joseph E. Italiano

The marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized platelets incubated with GTP-rhodamine-tubulin revealed tubulin incorporation at 7.9 (+/- 1.9) points throughout the coil, and anti-EB1 antibodies stained 8.7 (+/- 2.0) sites, indicative of multiple free microtubules. To pursue this result, we expressed the microtubule plus-end marker EB3-GFP in megakaryocytes and examined its behavior in living platelets released from these cells. Time-lapse microscopy of EB3-GFP in resting platelets revealed multiple assembly sites within the coil and a bidirectional pattern of assembly. Consistent with these findings, tyrosinated tubulin, a marker of newly assembled microtubules, localized to resting platelet microtubule coils. These results suggest that the resting platelet marginal band contains multiple highly dynamic microtubules of mixed polarity. Analysis of microtubule coil diameters in newly formed resting platelets indicates that microtubule coil shrinkage occurs with aging. In addition, activated EB3-GFP-expressing platelets exhibited a dramatic increase in polymerizing microtubules, which travel outward and into filopodia. Thus, the dynamic microtubules associated with the marginal band likely function during both resting and activated platelet states.


Genome Medicine | 2015

Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders.

Sarah K. Westbury; Ernest Turro; Daniel Greene; Claire Lentaigne; Anne M. Kelly; Tadbir K. Bariana; Ilenia Simeoni; Xavier Pillois; Antony P. Attwood; Steve Austin; Sjoert B. G. Jansen; Tamam Bakchoul; Abi Crisp-Hihn; Wendy N. Erber; Rémi Favier; Nicola S. Foad; Michael Gattens; Jennifer Jolley; Ri Liesner; Stuart Meacham; Carolyn M. Millar; Alan T. Nurden; Kathelijne Peerlinck; David J. Perry; Pawan Poudel; Sol Schulman; Harald Schulze; Jonathan Stephens; Bruce Furie; Peter N. Robinson

BackgroundHeritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases.MethodsWe report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes.ResultsWe show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician.ConclusionsThese findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.


Blood | 2013

Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

Irina Pleines; Sebastian Dütting; Deya Cherpokova; Anita Eckly; Imke Meyer; Martina Morowski; Georg Krohne; Harald Schulze; Christian Gachet; Najet Debili; Cord Brakebusch; Bernhard Nieswandt

Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were barely affected. Together, these results suggest that the combined action of Rac1 and Cdc42 is crucial for platelet production, particularly by regulating microtubule dynamics.


Journal of Biological Chemistry | 2008

RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules.

Harald Schulze; Marei Dose; Manav Korpal; Imke Meyer; Joseph E. Italiano; Ramesh A. Shivdasani

Microtubule spindle assembly in mitosis is stimulated by Ran·GTP, which is generated along condensed chromosomes by the guanine nucleotide exchange factor (GEF) RCC1. This relationship suggests that similar activities might modulate other microtubule structures. Interphase microtubules usually extend from the centrosome, although noncentrosomal microtubules function in some differentiated cells, including megakaryocytes. In these cells, platelet biogenesis requires massive mobilization of microtubules in the cell periphery, where they form proplatelets, the immediate precursors of platelets, in the apparent absence of centrioles. Here we identify a cytoplasmic Ran-binding protein, RanBP10, as a factor that binds β-tubulin and associates with megakaryocyte microtubules. Unexpectedly, RanBP10 harbors GEF activity toward Ran. A point mutation in the candidate GEF domain abolishes exchange activity, and our results implicate RanBP10 as a localized cytoplasmic Ran-GEF. RNA interference-mediated loss of RanBP10 in cultured megakaryocytes disrupts microtubule organization. These results lead us to propose that spatiotemporally restricted generation of cytoplasmic Ran·GTP may influence organization of the specialized microtubules required in thrombopoiesis and that RanBP10 might serve as a molecular link between Ran and noncentrosomal microtubules.

Collaboration


Dive into the Harald Schulze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph E. Italiano

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Hartwig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Klopocki

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge