Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Seitz is active.

Publication


Featured researches published by Harald Seitz.


Molecular & Cellular Proteomics | 2005

High Throughput Identification of Potential Arabidopsis Mitogen-activated Protein Kinases Substrates

Tanja Feilner; Claus Hultschig; Justin Lee; Svenja Meyer; Richard G. H. Immink; Andrea Koenig; Alexandra Possling; Harald Seitz; Allan Beveridge; Dierk Scheel; Dolores J. Cahill; Hans Lehrach; Jürgen Kreutzberger; Birgit Kersten

Mitogen-activated protein kinase (MAPK) cascades are universal and highly conserved signal transduction modules in eucaryotes, including plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. However, the underlying mechanisms are so far unknown as information about phosphorylation substrates of plant MAPKs is lacking. In this study we addressed the challenging task of identifying potential substrates for Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6, which are activated by many environmental stress factors. For this purpose, we developed a novel protein microarray-based proteomic method allowing high throughput study of protein phosphorylation. We generated protein microarrays including 1,690 Arabidopsis proteins, which were obtained from the expression of an almost nonredundant uniclone set derived from an inflorescence meristem cDNA expression library. Microarrays were incubated with MAPKs in the presence of radioactive ATP. Using a threshold-based quantification method to evaluate the microarray results, we were able to identify 48 potential substrates of MPK3 and 39 of MPK6. 26 of them are common for both kinases. One of the identified MPK6 substrates, 1-aminocyclopropane-1-carboxylic acid synthase-6, was just recently shown as the first plant MAPK substrate in vivo, demonstrating the potential of our method to identify substrates with physiological relevance. Furthermore we revealed transcription factors, transcription regulators, splicing factors, receptors, histones, and others as candidate substrates indicating that regulation in response to MAPK signaling is very complex and not restricted to the transcriptional level. Nearly all of the 48 potential MPK3 substrates were confirmed by other in vitro methods. As a whole, our approach makes it possible to shortlist candidate substrates of mitogen-activated protein kinases as well as those of other protein kinases for further analysis. Follow-up in vivo experiments are essential to evaluate their physiological relevance.


Environmental Microbiology | 2011

A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T.

Karin Schwibbert; Alberto Marin-Sanguino; Irina Bagyan; Gabriele Heidrich; Georg Lentzen; Harald Seitz; Markus Rampp; Stephan C. Schuster; Hans-Peter Klenk; Friedhelm Pfeiffer; Dieter Oesterhelt; Hans Jörg Kunte

The halophilic γ-proteobacterium Halomonas elongata DSM 2581T thrives at high salinity by synthesizing and accumulating the compatible solute ectoine. Ectoine levels are highly regulated according to external salt levels but the overall picture of its metabolism and control is not well understood. Apart from its critical role in cell adaptation to halophilic environments, ectoine can be used as a stabilizer for enzymes and as a cell protectant in skin and health care applications and is thus produced annually on a scale of tons in an industrial process using H. elongata as producer strain. This paper presents the complete genome sequence of H. elongata (4 061 296 bp) and includes experiments and analysis identifying and characterizing the entire ectoine metabolism, including a newly discovered pathway for ectoine degradation and its cyclic connection to ectoine synthesis. The degradation of ectoine (doe) proceeds via hydrolysis of ectoine (DoeA) to Nα-acetyl-l-2,4-diaminobutyric acid, followed by deacetylation to diaminobutyric acid (DoeB). In H. elongata, diaminobutyric acid can either flow off to aspartate or re-enter the ectoine synthesis pathway, forming a cycle of ectoine synthesis and degradation. Genome comparison revealed that the ectoine degradation pathway exists predominantly in non-halophilic bacteria unable to synthesize ectoine. Based on the resulting genetic and biochemical data, a metabolic flux model of ectoine metabolism was derived that can be used to understand the way H. elongata survives under varying salt stresses and that provides a basis for a model-driven improvement of industrial ectoine production.


Molecular Microbiology | 2000

The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli.

Harald Seitz; Christoph Weigel; Walter Messer

The initiation of chromosome replication in Escherichia coli requires the recruitment of the replicative helicase DnaB from the DnaBC complex to the unwound region within the replication origin oriC, supported by the oriC‐bound initiator protein DnaA. We defined physical contacts between DnaA and DnaB that involve residues 24–86 and 130–148 of DnaA and residues 154–210 and 1–156 of DnaB respectively. We propose that contacts between DnaA and DnaB occur via two interaction sites on each of the proteins. Interaction domain 24–86 of DnaA overlaps with its N‐terminal homo‐oligomerization domain (residues 1–86). Interaction domain 154–210 of DnaB overlaps or is contiguous with the domains known to interact with plasmid initiator proteins. Loading of the DnaBC helicase in vivo can only be performed by DnaA derivatives containing (in addition to residues 24–86 and the DNA‐binding domain 4) a structurally intact domain 3. Nucleotide binding by domain 3 is, however, not required. The parts of DnaA required for replication of pSC101 were clearly different from those used for helicase loading. Domains 1 and 4 of DnaA, but not domain 3, were found to be involved in the maintenance of plasmid pSC101.


Nature Reviews Genetics | 2005

Miniaturization in functional genomics and proteomics

Sascha Sauer; Bodo Lange; Johan Gobom; Lajos Nyarsik; Harald Seitz; Hans Lehrach

Proteins are the key components of the cellular machinery responsible for processing changes that are ordered by genomic information. Analysis of most human proteins and nucleic acids is important in order to decode the complex networks that are likely to underlie many common diseases. Significant improvements in current technology are also required to dissect the regulatory processes in high-throughtput and with low cost. Miniaturization of biological assays is an important prerequisite to achieve these goals in the near future.


Molecular Microbiology | 1999

The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA

Christoph Weigel; Andrea Schmidt; Harald Seitz; Doreen Tüngler; Michaela Welzeck; Walter Messer

Initiation of chromosome replication in Escherichia coli is governed by the interaction of the initiator protein DnaA with the replication origin oriC. Here we present evidence that homo‐oligomerization of DnaA via its N‐terminus (amino acid residues 1–86) is also essential for initiation. Results from solid‐phase protein‐binding assays indicate that residues 1–86 (or 1–77) of DnaA are necessary and sufficient for self interaction. Using a ‘one‐hybrid‐system’ we found that the DnaA N‐terminus can functionally replace the dimerization domain of coliphage lambda cI repressor: a λcI‐DnaA chimeric protein inhibits λ plasmid replication as efficiently as λcI repressor. DnaA derivatives with deletions in the N‐terminus are incapable of supporting chromosome replication from oriC, and, conversely, overexpression of the DnaA N‐terminus inhibits initiation in vivo. Together, these results indicate that (i) oligomerization of DnaA N‐termini is essential for protein function during initiation, and (ii) oligomerization does not require intramolecular cross‐talk with the nucleotide‐binding domain III or the DNA‐binding domain IV. We propose that E. coli DnaA is composed of largely independent domains — or modules — each contributing a partial, though essential, function to the proper functioning of the ‘holoprotein’.


Biochimie | 1999

Functional domains of DnaA proteins

Walter Messer; Franca Blaesing; Jerzy Majka; Judith Nardmann; Sigrid Schaper; Andrea Schmidt; Harald Seitz; Christian Speck; Doreen Tüngler; Grzegorz Węgrzyn; Christoph Weigel; Michaela Welzeck; Jolanta Zakrzewska-Czerwińska

Functional domains of the initiator protein DnaA of Escherichia coli have been defined. Domain 1, amino acids 1-86, is involved in oligomerization and in interaction with DnaB. Domain 2, aa 87-134, constitutes a flexible loop. Domain 3, aa 135-373, contains the binding site for ATP or ADP, the ATPase function, a second interaction site with DnaB, and is required for local DNA unwinding. Domain 4 is required and sufficient for specific binding to DNA. We show that there are three different types of cooperative interactions during the DNA binding of DnaA proteins from E. coli, Streptomyces lividans, and Thermus thermophilus: i) binding to distant binding sites; ii) binding to closely spaced binding sites; and iii) binding to non-canonical binding sites.


Current Opinion in Chemical Biology | 2006

Recent advances of protein microarrays

Claus Hultschig; Jürgen Kreutzberger; Harald Seitz; Zoltán Konthur; Konrad Büssow; Hans Lehrach

Technological innovations and novel applications have greatly advanced the field of protein microarrays. Over the past two years, different types of protein microarrays have been used for serum profiling, protein abundance determinations, and identification of proteins that bind DNA or small compounds. However, considerable development is still required to ensure common quality standards and to establish large content repertoires. Here, we summarize applications available to date and discuss recent technological achievements and efforts on standardization.


Biochimie | 2001

Bacterial replication initiator DnaA. Rules for DnaA binding and rolesof DnaA in origin unwinding and helicase loading

Walter Messer; Franca Blaesing; Dagmara Jakimowicz; Margret Krause; Jerzy Majka; Judith Nardmann; Sigrid Schaper; Harald Seitz; Christian Speck; Christoph Weigel; Grzegorz Węgrzyn; Michaela Welzeck; Jolanta Zakrzewska-Czerwińska

We review the processes leading to the structural modifications required for the initiation of replication in Escherichia coli, the conversion of the initial complex to the open complex, loading of helicase, and the assembly of two replication forks. Rules for the binding of DnaA to its binding sites are derived, and the properties of ATP-DnaA are described. We provide new data on cooperative interaction and dimerization of DnaA proteins of E. coli, Streptomyces and Thermus thermophilus, and on the stoichiometry of DnaA-oriC complexes of E. coli.


BMC Immunology | 2009

Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells

Young-Sook Baek; Stefan A. Haas; Holger Hackstein; Gregor Bein; Maria Hernandez-Santana; Hans Lehrach; Sascha Sauer; Harald Seitz

BackgroundMonocytes and macrophages play essential role in innate immunity. Understanding the underlying mechanism of macrophage differentiation and the identification of regulatory mechanisms will help to find new strategies to prevent their harmful effects in chronic inflammatory diseases and sepsis.ResultsMaturation of blood monocytes into tissue macrophages and subsequent inflammatory response was mimicked in U937 cells of human histocytic lymphoma origin. Whole genome array analysis was employed to evaluate gene expression profile to identify underlying transcriptional networks implicated during the processes of differentiation and inflammation. In addition to already known transcription factors (i.e. MAFB, EGR, IRF, BCL6, NFkB, AP1, Nur77), gene expression analysis further revealed novel genes (i.e. MEF2, BRI, HLX, HDAC5, H2AV, TCF7L2, NFIL3) previously uncharacterized to be involved in the differentiation process. A total of 58 selected genes representing cytokines, chemokines, surface antigens, signaling molecules and transcription factors were validated by real time PCR and compared to primary monocyte-derived macrophages. Beside the verification of several new genes, the comparison reveals individual heterogeneity of blood donors.ConclusionUp regulation of MEF2 family, HDACs, and H2AV during cell differentiation and inflammation sheds new lights onto regulation events on transcriptional and epigenetic level controlling these processes. Data generated will serve as a source for further investigation of macrophages differentiation pathways and related biological responses.


Molecular Microbiology | 2002

Strand‐specific loading of DnaB helicase by DnaA to a substrate mimicking unwound oriC

Christoph Weigel; Harald Seitz

We analysed the enzymatic activity (strand dis‐placement) of the Escherichia coli DnaB helicase on a mirror‐image pair of oligonucleotide‐based substrates mimicking the unwound replication origin oriC. Loading of the helicase complex occurred exclusively to the single‐stranded ‘lower strand’ part of the substrates. Full helicase activity required DnaA bound to the double‐stranded part of the substrates (oriC DnaA box R1) and to their single‐stranded ‘upper strand’ part. We assume that in vivo DnaA also loads the first of two helicase complexes – required for the assembly of two replication forks – to the lower strand of oriC during initiation of bidirectional chromosome replication in E. coli.

Collaboration


Dive into the Harald Seitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge