Harald Stueger
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Stueger.
Journal of the American Chemical Society | 2008
Paul Hamon; Frédéric Justaud; Olivier Cador; Philippe Hapiot; Stéphane Rigaut; Loı̈c Toupet; Lahcène Ouahab; Harald Stueger; Jean-René Hamon; Claude Lapinte
Treatment of the triflate complex Cp*(dppe)FeOTf [12; Cp* = eta(5)-C(5)(CH(3))(5), dppe = 1,2-bis(diphenylphosphino)ethane, OTf = CF(3)SO(3)] with an excess of HC[triple bond]C-(Si(CH(3))(2))(x)-C[triple bond]CH (x = 2-4) in diethyl ether provides the binuclear bis(vinylidene) derivatives [Cp*(dppe)Fe=C=CH(Si(CH(3))(2))(x)CH=C=Fe(dppe)Cp*][OTf](2) (x = 2, 13; x = 3, 14; x = 4, 15), which were isolated as ochre solids and rapidly characterized by FT-IR, (1)H, (31)P, and (13)C NMR spectroscopies. The complexes 13-15 were reacted with potassium tert-butoxide to afford the bis(alkynediyl) complexes [Cp*(dppe)Fe-C[triple bond]C(Si(CH(3))(2))(x)C[triple bond]C-Fe(dppe)Cp*] (x = 2, 1; x = 3, 2; x = 4, 3), which were isolated as orange powders in yields ranging from 76 to 91%. The IR, cyclic voltammetry, and UV-vis data obtained for 1-3 and the X-ray crystal structures determined for 1 and 3 reveal the importance of the sigma-pi conjugation (hyperconjugation) between the Si-Si sigma bond and the adjacent C[triple bond]C pi-symmetric orbitals in the description of the electronic structure of the ground state of these complexes. When reacted at low temperature with 2 equiv of [(C(5)H(5))(2)Fe]X or AgX [X = BPh(4), B(3,5-(CF(3))(2)C(6)H(3))(4))], compounds 1-3 provide 1[X](2), 2[X](2), and 3[X](2), which can be isolated and stored below -20 degrees C. EPR spectroscopy and magnetization measurements established that the superexchange interaction propagates through the Si-Si bonds (J = -0.97(2) cm(-1) for 3[X](2)). UV-vis-near-IR spectra were obtained with an optically transparent thin-layer electrosynthetic (OTTLE) cell for 1-3[OTf](n) (n = 0-2). A band with a maximum that increases from 6400 cm(-1) (1[OTf]) to 8500 cm(-1) (3[OTf]) observed for the mixed-valence species was ascribed to intervalence charge transfer evidencing photodriven electron transfer through the carbon-silicon hybrid connectors with H(ab) parameters ranging from 64 to 285 cm(-1).
Angewandte Chemie | 2017
Judith Radebner; Anna Eibel; Mario Leypold; Christian Gorsche; Lukas Schuh; Roland C. Fischer; Ana Torvisco; Dmytro Neshchadin; Roman Geier; Norbert Moszner; Robert Liska; Georg Gescheidt; Michael Haas; Harald Stueger
In this contribution a convenient synthetic method to obtain tetraacylgermanes Ge[C(O)R]4 (R=mesityl (1 a), phenyl (1 b)), a previously unknown class of highly efficient Ge-based photoinitiators, is described. Tetraacylgermanes are easily accessible via a one-pot synthetic protocol in >85 % yield, as confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The efficiency of 1 a,b as photoinitiators is demonstrated in photobleaching (UV/Vis), time-resolved EPR (CIDEP), and NMR/CIDNP investigations as well as by photo-DSC studies. Remarkably, the tetraacylgermanes exceed the performance of currently known long-wavelength visible-light photoinitiators for free-radical polymerization.
Organometallics | 2014
Harald Stueger; Bernd Hasken; Michael Haas; Martin Rausch; Roland C. Fischer; Ana Torvisco
Previously unknown 1,1,4-tris(trimethylsilyl)-4-acyldodecamethylcyclohexasilanes (Me3Si)2Si6Me12(Me3Si)COR (16a, R = tert-butyl; 16b, R = 1-adamantyl) have been synthesized by the reaction of the potassium silanides (Me3Si)2Si6Me12(Me3Si)K with acid chlorides ClCOR, and their photochemical rearrangement reactions have been studied. The molecular structures of 16a,b as determined by single-crystal X-ray diffraction analysis exhibit an unusual twist-boat conformation of the cyclohexasilane ring. When 16a,b were photolyzed with λ >300 nm radiation, they underwent Brook type 1,3-Si → O migration reactions to generate the cyclohexasilanes 17a,b with exocyclic Si=C bonds along with smaller amounts of the ring-enlarged species 19a,b with endocyclic Si=C double bonds. While 17a,b were stable enough to allow characterization by NMR and UV absorption spectroscopy, the less stable products 19a,b could only be observed in the form of their methanol adducts.
Organometallics | 2014
Michael Haas; Roland C. Fischer; Michaela Flock; Stefan K. Mueller; Martin Rausch; Robert Saf; Ana Torvisco; Harald Stueger
The first silenolates with exocyclic structures [(Me3Si)2Si(Si2Me4)2SiC(R)O]−K+ (2a: R = 1-adamantyl; 2b: mesityl; 2c: o-tolyl) were synthesized by the reaction of the corresponding acylcyclohexasilanes 1a–c with KOtBu. NMR spectroscopy and single-crystal X-ray diffraction analysis suggest that the aryl-substituted silenolates 2b,c exhibit increased character of functionalized silenes as compared to the alkyl-substituted derivative 2a due to the different coordination of the K+ counterion to the SiC(R)O moiety. 2b,c, thus, reacted with ClSiiPr3 to give the exocyclic silenes (Me3Si)2Si(Si2Me4)2Si=C(OSiiPr3)R (3b: R = Mes; 3c: o-Tol), while 2a afforded the Si-silylated acylcyclohexasilane 1d. The thermally remarkably stable compound 3b, which is the first isolated silene with the sp2 silicon atom incorporated into a cyclopolysilane framework, could be fully characterized structurally and spectroscopically.
Inorganic Chemistry | 2012
Harald Stueger; Thomas Mitterfellner; Roland A. Fischer; Christoph Walkner; Matthias Patz; Stephan Wieber
The perhydropentasilanes (H(3)Si)(4)Si and Si(5)H(10) were chlorinated with SnCl(4) to give chlorohydropentasilanes without destruction of the Si-Si backbone. Tetrachloroneopentasilane (ClH(2)Si)(4)Si (2) was prepared in high yield from (H(3)Si)(4)Si and 3.5 equiv of SnCl(4), while Si(5)H(10) and an equimolar amount of SnCl(4) afforded a mixture of ∼60% of ClSi(5)H(9) (1) with polychlorinated cyclopentasilanes and unreacted starting material, which could not be separated by distillation. The selective monochlorination of Si(5)H(10) was achieved starting from MesSi(5)Cl(9) (3; Mes = 2,4,6-trimethylphenyl) or TBDMP-Si(5)Cl(9) (4; TBDMP = 4-tert-butyl-2,6-dimethylphenyl). 3 or 4 was successfully hydrogenated with LiAlH(4) to give MesSi(5)H(9) (6) or TBDMP-Si(5)H(9) (7), which finally gave 1 along with aryl-H and Si(5)H(10) after treatment with an excess of liquid anhydrous HCl. All compounds were characterized by standard spectroscopic techniques. For Si-H derivatives, the coupled (29)Si NMR spectra were analyzed in detail to obtain an unequivocal structural assignment. The molecular structures of 2-4 were further confirmed by X-ray crystallography.
Chemistry: A European Journal | 2012
Harald Stueger; Thomas Mitterfellner; Roland C. Fischer; Christoph Walkner; Matthias Patz; Stephan Wieber
Greetings from silicon valley: Alkali metal silanides (H(3)Si)(3)Si(-)M(+) were shown to be selectively accessible for the first time by the reaction of neopentasilane Si(SiH(3))(4) with tBuOM or iPr(2)NLi. The method allows the convenient derivatization of higher silicon hydrides and provides a simple access for unprecedented systematic studies on the chemical behavior of hydropolysilanes (see scheme).
Polymer Chemistry | 2018
Anna Eibel; Judith Radebner; Michael Haas; David E. Fast; Hilde Freißmuth; Eduard Stadler; Paul Faschauner; Ana Torvisco; Iris Lamparth; Norbert Moszner; Harald Stueger; Georg Gescheidt
We have investigated the inititiaton efficiency of carefully selected germanium-based photointiators for radical polymerization. To establish a systematic relationship between structure and reactivity, we have developed a convenient synthetic protocol for the preparation of a trisacylgermane, closing the gap from mono- to tetraacylgermane photoinitiators. The studied acylgermanes display distinct, wavelength-dependent photobleaching upon irradiation up to 470 nm. In particular, tetraacylgermanes featuring ortho-alkyl substituents reveal red-shifted n–π* bands, in line with excellent photobleaching upon visible light irradiation. Quantum yields of decomposition (determined at 385 nm) have been found to be highest for bisacylgermanes. Germyl radicals produced upon triplet-state α-cleavage of the acylgermanes react remarkably fast with monomers. Addition rate constants to (meth)acrylates range from 0.4–4.5 × 108 M−1 s−1, depending on the substitution pattern. These values are clearly higher than those reported for related phosphorus-centered radicals derived from acylphosphane oxides. We have further established the nature of the products and side-products formed at initial stages of the polymerizations using chemically induced dynamic nuclear polarization (CIDNP) experiments.
Phosphorus Sulfur and Silicon and The Related Elements | 2016
Michael Haas; Lukas Schuh; Ana Torvisco; Harald Stueger; Christa Grogger
GRAPHICAL ABSTRACT ABSTRACT Acylcyclohexasilanes are interesting starting materials for the formation of cyclic silenes. Employing standard cyclopolysilane synthetic procedures, nine previously unknown acylcyclohexasilanes were synthesized and characterized by NMR, and UV-Vis spectroscopy and X-ray crystallography to elucidate substituent influences of the R-group attached to the carbonyl C-atom.
Organometallics | 2013
Harald Stueger; Bernd Hasken; Uwe Gross; Roland C. Fischer; Ana Torvisco Gomez
A series of previously unknown bridgehead-functionalized bicyclo[2.2.2]octasilanes, Me3Si-Si8Me12-X, X-Si8Me12-X, and X-Si8Me12-Y [X, Y = −SiMenPh3–n (n = 1, 2) (2, 3, 10), −SiMe2Fc (Fc = ferrocenyl) (4, 11, 13, 14), −COR (R = Me, tBu) (6, 7, 12), COOMe (8), COOH (9)], have been prepared by the reaction of the silanides Me3Si-Si8Me12–K+ or K+–Si8Me12–K+ with proper electrophiles and fully characterized. The molecular structures of 2, 3, 4, 6, 8, 9, 10, and 13 as determined by single-crystal X-ray diffraction analysis exhibit a slightly twisted structure of the bicyclooctasilane cage. Endocyclic bond lengths, bond angles, and dihedral angles are not influenced considerably by the substituents attached to the bridgehead silicon atoms. Due to σ(SiSi)/π(aryl) conjugation, a 20–30 nm bathochromic shift of the longest wavelength UV absorption band relative to Me3Si-Si8Me12-SiMe3 (1) is evident in the UV absorption spectra of the phenyl and ferrocenyl derivatives. Otherwise, UV absorption data do not support the assumption of aryl/aryl or aryl/C=O interaction via the σ(SiSi) bicyclooctasilane framework.
Chemistry: A European Journal | 2018
Judith Radebner; Anna Eibel; Mario Leypold; Nina Jungwirth; Thomas Pickl; Ana Torvisco; Roland C. Fischer; Urs Karl Fischer; Norbert Moszner; Georg Gescheidt; Harald Stueger; Michael Haas
Abstract The first tetraacylstannanes Sn[(CO)R]4 (R=2,4,6‐trimethylphenyl (1 a) and 2,6‐dimethylphenyl (1 b)), a class of highly efficient Sn‐based photoinitiators, were synthesized. The formation of these derivatives was confirmed by NMR spectroscopy, mass spectrometry, and X‐ray crystallography. The UV/Vis absorption spectra of 1 a, b reveal a significant redshift of the longest wavelength absorption compared to the corresponding germanium compounds. In contrast to the known toxicity of organotin derivatives, the AMES test and cytotoxicity studies reveal intriguing low toxicity. The excellent performance of 1 as photoinitiators is demonstrated by photobleaching (UV/Vis) and NMR/CIDNP investigations, as well as photo‐DSC studies.