Haranatha R. Potteti
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haranatha R. Potteti.
American Journal of Respiratory Cell and Molecular Biology | 2011
Narsa M. Reddy; Haranatha R. Potteti; Thomas J. Mariani; Shyam Biswall; Sekhar P. Reddy
Oxidant stress, resulting from an excess of reactive electrophiles produced in the lung by both resident (epithelial and endothelial) and infiltrated leukocytes, is thought to play an obligatory role in tissue injury and abnormal repair. Previously, using a conventional (whole-body) knockout model, we showed that antioxidative gene induction regulated by the transcription factor Nrf2 is critical for mitigating oxidant-induced (hyperoxic) stress, as well as for preventing and resolving tissue injury and inflammation in vivo. However, the contribution to pathogenic acute lung injury (ALI) of the cellular stress produced by resident versus infiltrated leukocytes remains largely undefined in vivo. To address this critical gap in our knowledge, we generated mice with a conditional deletion of Nrf2 specifically in Clara cells, subjected these mice to hyperoxic insult, and allowed them to recover. We report that a deficiency of Nrf2 in airway epithelia alone is sufficient to contribute to the development and progression of ALI. When exposed to hyperoxia, mice lacking Nrf2 in Clara cells showed exacerbated lung injury, accompanied by greater levels of cell death and epithelial sloughing than in their wild-type littermates. In addition, we found that an Nrf2 deficiency in Clara cells is associated with a persistent inflammatory response and epithelial sloughing in the lungs during recovery from sublethal hyperoxic insult. Our results demonstrate (for the first time, to the best of our knowledge) that Nrf2 signaling in Clara cells is critical for conferring protection from hyperoxic lung injury and for resolving inflammation during the repair process.
Kidney International | 2014
Manchang Liu; Narsa M. Reddy; Elizabeth Higbee; Haranatha R. Potteti; Sanjeev Noel; Lorraine C. Racusen; Thomas W. Kensler; Michael B. Sporn; Sekhar P. Reddy; Hamid Rabb
Acute kidney injury (AKI) caused by ischemia reperfusion is a major clinical problem in both native and transplanted kidneys. We previously showed that deficiency of Nrf2, a potent bZIP transcription factor that binds to the antioxidant response element, enhances susceptibility to experimental ischemic AKI. Here we further explored the role of Nrf2 in AKI by amplifying Nrf2 activation in vivo and in vitro with the synthetic triterpenoid CDDO-imidazolide. Mice treated with CDDO-imidazolide and undergoing experimental bilateral ischemic AKI had improved survival and renal function. Treated mice had improved renal histology with a decrease in tubular injury, as well as a decrease in pro-inflammatory cytokine and chemokine production compared to vehicle-treated mice. In an exploration of protective mechanisms, we found an up-regulation of Nrf2 target antioxidant genes in CDDO-imidazolide treated mouse kidneys. Furthermore, Nrf2 deficient mice treated with CDDO-imidazolide had no significant improvement in mortality, renal function or histology, pro-inflammatory cytokine gene expression, and no significant increase in antioxidant gene expression. In vitro studies demonstrated that the renal epithelial cells were likely an important target of CDDO-imidazolide. Thus, activation of Nrf2 signaling with CDDO-imidazolide confers protection from AKI, and presents a new therapeutic opportunity for this common and serious condition.
PLOS ONE | 2015
Narsa M. Reddy; Haranatha R. Potteti; Suryanarayana Vegiraju; Hsin Jou Chen; Chandra Mohan Tamatam; Sekhar P. Reddy
Lung epithelial and endothelial cell death accompanied by inflammation contributes to hyperoxia-induced acute lung injury (ALI). Impaired resolution of ALI can promote and/or perpetuate lung pathogenesis, including fibrosis. Previously, we have shown that the transcription factor Nrf2 induces cytoprotective gene expression and confers protection against hyperoxic lung injury, and that Nrf2-mediated signaling is also crucial for the restoration of lung homeostasis post-injury. Although we have reported that PI3K/AKT signaling is required for Nrf2 activation in lung epithelial cells, significance of the PI3K/AKT-Nrf2 crosstalk during hyperoxic lung injury and repair remains unclear. Thus, we evaluated this aspect using Nrf2 knockout (Nrf2 –/–) and wild-type (Nrf2 +/+) mouse models. Here, we show that pharmacologic inhibition of PI3K/AKT signaling increased lung inflammation and alveolar permeability in Nrf2 +/+ mice, accompanied by decreased expression of Nrf2-target genes such as Nqo1 and Hmox1. PI3K/AKT inhibition dampened hyperoxia-stimulated Nqo1 and Hmox1 expression in lung epithelial cells and alveolar macrophages. Contrasting with its protective effects, PI3K/AKT inhibition suppressed lung inflammation in Nrf2 +/+ mice during post-injury. In Nrf2 –/– mice exposed to room-air, PI3K/AKT inhibition caused lung injury and inflammation, but it did not exaggerate hyperoxia-induced ALI. During post-injury, PI3K/AKT inhibition did not augment, but rather attenuated, lung inflammation in Nrf2 –/– mice. These results suggest that PI3K/AKT-Nrf2 signaling is required to dampen hyperoxia-induced lung injury and inflammation. Paradoxically, the PI3K/AKT pathway promotes lung inflammation, independent of Nrf2, during post-injury.
Journal of The American Society of Nephrology | 2015
Sanjeev Noel; Maria N. Martina; Samatha Bandapalle; Lorraine C. Racusen; Haranatha R. Potteti; Abdel Rahim A. Hamad; Sekhar P. Reddy; Hamid Rabb
T lymphocytes are established mediators of ischemia reperfusion (IR)-induced AKI, but traditional immune principles do not explain their mechanism of early action in the absence of alloantigen. Nrf2 is a transcription factor that is crucial for cytoprotective gene expression and is generally thought to have a key role in dampening IR-induced AKI through protective effects on epithelial cells. We proposed an alternative hypothesis that augmentation of Nrf2 in T cells is essential to mitigate oxidative stress during IR-induced AKI. We therefore generated mice with genetically amplified levels of Nrf2 specifically in T cells and examined the effect on antioxidant gene expression, T cell activation, cytokine production, and IR-induced AKI. T cell-specific augmentation of Nrf2 significantly increased baseline antioxidant gene expression. These mice had a high frequency of intrarenal CD25(+)Foxp3(+) regulatory T cells and decreased frequencies of CD11b(+)CD11c(+) and F4/80(+) cells. Intracellular levels of TNF-α, IFN-γ, and IL-17 were significantly lower in CD4(+) T cells with high Nrf2 expression. Mice with increased T cell expression of Nrf2 were significantly protected from functional and histologic consequences of AKI. Furthermore, adoptive transfer of high-Nrf2 T cells protected wild-type mice from IR injury and significantly improved their survival. These data demonstrate that T cell-specific activation of Nrf2 protects from IR-induced AKI, revealing a novel mechanism of tissue protection during acute injury responses.
European Journal of Medicinal Chemistry | 2015
Atul D. Jain; Haranatha R. Potteti; Benjamin G. Richardson; Laura J. Kingsley; Julia P. Luciano; Aya F. Ryuzoji; Hyun Lee; Aleksej Krunic; Andrew D. Mesecar; Sekhar P. Reddy; Terry W. Moore
Activation of the transcription factor Nrf2 has been posited to be a promising therapeutic strategy in a number of inflammatory and oxidative stress diseases due to its regulation of detoxifying enzymes. In this work, we have developed a comprehensive structure-activity relationship around a known, naphthalene-based non-electrophilic activator of Nrf2, and we report highly potent non-electrophilic activators of Nrf2. Computational docking analysis of a subset of the compound series demonstrates the importance of water molecule displacement for affinity, and the X-ray structure of di-amide 12e supports the computational analysis. One of the best compounds, acid 16b, has an IC50 of 61 nM in a fluorescence anisotropy assay and a Kd of 120 nM in a surface plasmon resonance assay. Additionally, we demonstrate that the ethyl ester of 16b is an efficacious inducer of Nrf2 target genes, exhibiting ex vivo efficacy similar to the well-known electrophilic activator, sulforaphane.
Molecular and Cellular Biology | 2012
Michelle Vaz; Narsa Machireddy; Ashley Irving; Haranatha R. Potteti; Karinne Chevalier; Dhananjaya V. Kalvakolanu; Sekhar P. Reddy
ABSTRACT AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1Δ/Δ) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H2O2- and diquat-induced cell death, compared to their wild-type (Fra-1+/+) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1Δ/Δ cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1Δ/Δ cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses.
Oxidative Medicine and Cellular Longevity | 2013
Haranatha R. Potteti; Narsa M. Reddy; Tom K. Hei; Dhananjaya V. Kalvakolanu; Sekhar P. Reddy
Lung epithelial and endothelial cell death caused by pro-oxidant insults is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients. The NF-E2-related factor 2 (NRF2) activation in response to oxidant exposure is crucial to the induction of several antioxidative and cytoprotective enzymes that mitigate cellular stress. Since prolonged exposure to hyperoxia causes cell death, we hypothesized that chronic hyperoxia impairs NRF2 activation, resulting in cell death. To test this hypothesis, we exposed nonmalignant small airway epithelial cells (AECs) to acute (1–12 h) and chronic (36–48 h) hyperoxia and evaluated cell death, NRF2 nuclear accumulation and target gene expression, and NRF2 recruitment to the endogenous HMOX1 and NQO1 promoters. As expected, hyperoxia gradually induced death in AECs, noticeably and significantly by 36 h; ~60% of cells were dead by 48 h. However, we unexpectedly found increased expression levels of NRF2-regulated antioxidative genes and nuclear NRF2 in AECs exposed to chronic hyperoxia as compared to acute hyperoxia. Chromatin Immunoprecipitation (ChIP) assays revealed an increased recruitment of NRF2 to the endogenous HMOX1 and NQO1 promoters in AECs exposed to acute or chronic hyperoxia. Thus, our findings demonstrate that NRF2 activation and antioxidant gene expression are functional during hyperoxia-induced lung epithelial cell death and that chronic hyperoxia does not impair NRF2 signaling overall.
American Journal of Physiology-renal Physiology | 2016
Haranatha R. Potteti; Chandramohan R. Tamatam; Rakesh Marreddy; Narsa M. Reddy; Sanjeev Noel; Hamid Rabb; Sekhar P. Reddy
Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process.
American Journal of Respiratory Cell and Molecular Biology | 2017
Indira Elangovan; Michelle Vaz; Chandramohan R. Tamatam; Haranatha R. Potteti; Narsa M. Reddy; Sekhar P. Reddy
&NA; The FOSL1/AP‐1 transcription factor regulates gene expression, thereby controlling various pathophysiological processes. It is a major effector of RAS‐ERK1/2 signaling and is activated in human lung epithelia by tumorigenic stimuli. Recent evidence shows an inverse correlation between FOSL1 expression and the survival of patients with lung cancer and adenocarcinomas; however, its role in lung tumorigenesis remains elusive. In this work, we sought to determine the role of FOSL1 in Kras‐induced lung adenocarcinoma in vivo and its downstream effector mechanisms. We used mice expressing the Kras oncogene in the lung with concomitant Fosl1 deletion, Kras‐activated murine alveolar epithelial cells (mAECs) with Fosl1 deletion, and KRAS mutant human lung adenocarcinoma (HLAC) cells with FOSL1 deficiency, and performed cell proliferation and gene expression analyses. Mutant Kras induced Fosl1 expression in vitro (mAECs) and in vivo (lung tissue), and mice with Fosl1 deletion showed reduced levels of mutant Kras‐induced lung tumorigenesis and survived longer than Fosl1‐sufficient mice. Studies with mutant Kras‐activated mAECs and KRAS‐mutant HLAC cells revealed that FOSL1 regulates mutant KRAS‐induced gene expression, thereby controlling cell proliferation and survival. In contrast, FOSL1 depletion in non‐KRAS‐mutant HLAC cells and nonmalignant human lung epithelia had no effect. Our data support the notion that FOSL1‐mediated expression of amphiregulin and apoptotic and antioxidative genes plays a role in regulating HLAC cell proliferation and survival. FOSL1 is a determinant of lung cancer in vivo and regulates HLAC cell proliferation and survival, largely in the context of KRAS mutations. Activation of FOSL1 in adenocarcinomas may be a prognostic marker and potential target for human lung cancer with KRAS mutations.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Subbiah Rajasekaran; Chandramohan R. Tamatam; Haranatha R. Potteti; Venu Raman; Jae-Woo Lee; Michael A. Matthay; Dolly Mehta; Narsa M. Reddy; Sekhar P. Reddy
Inappropriate lung inflammatory response following oxidant and toxicant exposure can lead to abnormal repair and disease pathogenesis, including fibrosis. Thus early detection of molecular and cellular processes and mediators promoting lung inflammation is necessary to develop better strategies for therapeutic intervention and disease management. Previously, we have shown that transcription factor Fra-1/AP-1 plays key roles in lung inflammatory response, as Fra-1-null mice are less susceptible than wild-type mice to LPS-induced lung injury and mortality. Herein, we developed a transgenic reporter mouse model expressing tdTomato under the control of FRA-1 (human) promoter (referred to as FRA-1(TdTg) mice) to monitor its activation during inflammatory lung injury using fluorescence protein-based optical imaging and molecular analysis in vivo and ex vivo. A higher red fluorescent signal was observed in the lungs of LPS-treated FRA-1(TdTg) mice compared with vehicle controls, and Western blot and qRT-PCR analyses revealed a significant correlation with the FRA-1-tdTomato reporter expression. Immunocolocalization demonstrated expression of FRA-1-tdTomato largely in lung alveolar macrophages and to some extent in epithelial cells. Moreover, we validated these results with a second reporter mouse model that expressed green fluorescent protein upon activation of endogenous Fra-1 promoter. Additionally, we demonstrated increased expression of FRA-1 in alveolar macrophages in human lung instilled with Escherichia coli ex vivo. Collectively, our data obtained from two independent reporter mouse models and from human samples underscore the significance of Fra-1 activation in alveolar macrophages during inflammatory lung injury and may aid in developing strategies to target this transcription factor in lung injury and repair.