Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hardeep Kataria is active.

Publication


Featured researches published by Hardeep Kataria.


Langmuir | 2012

Gemini imidazolium surfactants: synthesis and their biophysiochemical study.

Raman Kamboj; Sukhprit Singh; Avinash Bhadani; Hardeep Kataria; Gurcharan Kaur

New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.


Cancer Science | 2009

Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation

Navjot Shah; Hardeep Kataria; Sunil C. Kaul; Tetsuro Ishii; Gurcharan Kaur; Renu Wadhwa

Ashwagandha (Withania somnifera) is widely used in the Indian traditional system of medicine, Ayurveda. Although it is claimed to have a large variety of health‐promoting effects, including therapeutic effects on stress and disease, the mechanisms of action have not yet been determined. In the present study, we aimed to investigate the growth inhibition and differentiation potential of the alcoholic extract of Ashwagandha leaves (i‐Extract), its different constituents (Withaferin A, Withanone, Withanolide A) and their combinations on glioma (C6 and YKG1) cell lines. Withaferin A, Withanone, Withanolide A and i‐Extract markedly inhibited the proliferation of glioma cells in a dose‐dependent manner and changed their morphology toward the astrocytic type. Molecular analysis revealed that the i‐Extract and some of its components caused enhanced expression of glial fibrillary acidic protein, change in the immunostaining pattern of mortalin from perinuclear to pancytoplasmic, delay in cell migration, and increased expression of neuronal cell adhesion molecules. The data suggest that the i‐Extract and its components have the potential to induce senescence‐like growth arrest and differentiation in glioma cells. These assays led us to formulate a unique combination formula of i‐Extract components that caused enhanced differentiation of glial cells. (Cancer Sci 2009; 100: 1740–1747)


Age | 2012

Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats

Rumani Singh; Dinesh Lakhanpal; Sushil Kumar; Sandeep Sharma; Hardeep Kataria; Manpreet Kaur; Gurcharan Kaur

Lifelong dietary restriction (DR) is known to have many potential beneficial effects on brain function as well as delaying the onset of neurological diseases. In the present investigation, the effect of late-onset short-term intermittent fasting dietary restriction (IF-DR) regimen was studied on motor coordination and cognitive ability of ageing male rats. These animals were further used to estimate protein carbonyl content and mitochondrial complex I–IV activity in different regions of brain and peripheral organs, and the degree of age-related impairment and reversion by late-onset short-term IF-DR was compared with their levels in 3-month-old young rats. The results of improvement in motor coordination by rotarod test and cognitive skills by Morris water maze in IF-DR rats were found to be positively correlated with the decline in the oxidative molecular damage to proteins and enhanced mitochondrial complex IV activity in different regions of ageing brain as well as peripheral organs. The work was further extended to study the expression of synaptic plasticity-related proteins, such as synaptophysin, calcineurin and CaM kinase II to explore the molecular basis of IF-DR regimen to improve cognitive function. These results suggest that even late-onset short-term IF-DR regimen have the potential to retard age-associated detrimental effects, such as cognitive and motor performance as well as oxidative molecular damage to proteins.


PLOS ONE | 2012

Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

Hardeep Kataria; Renu Wadhwa; Sunil C. Kaul; Gurcharan Kaur

Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.


Journal of Colloid and Interface Science | 2011

Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain gemini imidazolium and pyridinium amphiphiles.

Avinash Bhadani; Hardeep Kataria; Sukhprit Singh

Two series of phenoxy ring containing long chain imidazolium and pyridinium based gemini amphiphiles have been synthesized from renewable cardanol oil having different spacers (i. e. -S-(CH(2))(n)-S-, where n is 2, 3, 4 & 6). Critical micelle concentration (cmc) of these new gemini amphiphiles has been determined by conductivity method. Further, these new cationic amphiphiles have been evaluated for their DNA binding capability by agarose gel electrophoresis, ethidium bromide exclusion experiments and transmission electron microscopy (TEM). The cytotoxicity of these new amphiphiles have been evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Comparative studies of these phenoxy ring containing long chain gemini imidazolium amphiphiles and their pyridinium analogues depicted low cmc values of the later but greater DNA interaction capability and low cytotoxicity of the former series of amphiphiles.


PLOS ONE | 2013

Withania somnifera Water Extract as a Potential Candidate for Differentiation Based Therapy of Human Neuroblastomas

Hardeep Kataria; Renu Wadhwa; Sunil C. Kaul; Gurcharan Kaur

Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.


Evidence-based Complementary and Alternative Medicine | 2011

Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells

Hardeep Kataria; Navjot Shah; Sunil C. Kaul; Renu Wadhwa; Gurcharan Kaur

Root extracts of Withania somnifera (Ashwagandha) are commonly used as a remedy for a variety of ailments and a general tonic for overall health and longevity in the Indian traditional medicine system, Ayurveda. We undertook a study to investigate the anti-proliferative and differentiation-inducing activities in the water extract of Ashwagandha leaves (ASH-WEX) by examining in glioma cells. Preliminary detection for phytochemicals was performed by thin-layer chromatography. Cytotoxicity was determined using trypan blue and MTT assays. Expression level of an hsp70 family protein (mortalin), glial cell differentiation marker [glial fibrillary acidic protein (GFAP)] and neural cell adhesion molecule (NCAM) were analyzed by immunocytochemistry and immunoblotting. Anti-migratory assay was also done using wound-scratch assay. Expression levels of mortalin, GFAP and NCAM showed changes, subsequent to the treatment with ASH-WEX. The data support the existence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastasis activities in ASH-WEX that could be used as potentially safe and complimentary therapy for glioma.


Neuroscience Research | 2009

Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain

Sushil Kumar; Jyoti Parkash; Hardeep Kataria; Gurcharan Kaur

Dietary restriction (DR) is known to have potential health benefits including enhanced resistance of neurons to excitotoxic, oxidative and metabolic insults, cancer, stress, diabetes, reduced morbidity, and increased life span. In the present study, we examined the effect of DR (alternate day feeding regimen) on neurogenesis, expression of immature neuronal marker polysialic acid neural cell adhesion molecule (PSA-NCAM) and neurotrophic factors from different brain regions such as subventricular zone (SVZ), subgranular zone (SGZ) of hippocampus, median eminence arcuate (ME-ARC) region of hypothalamus, and piriform cortex (PIR) of adult male rats and further challenged ad libitum fed (AL) and DR rats with pilocarpine to induce excitotoxic injury. The quantitative analysis of bromodeoxyuridine (BrdU) labeling revealed a significant increase in the proliferation rate of neuronal progenitor cells from discrete brain regions in DR rats with and without pilocarpine induced seizures as compared to AL rats. DR significantly enhanced the expression of PSA-NCAM and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). There was a marked reduction in neuronal cell death in SVZ and PIR cortex after pilocarpine administration in DR rats. These results add to the accumulating evidence that DR may be an effective intervention to enhance the resistance of brain to excitotoxic injury.


Journal of Biological Chemistry | 2014

Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival

David Lutz; Gabriele Loers; Ralf Kleene; Iris Oezen; Hardeep Kataria; Nainesh Katagihallimath; Ingke Braren; George Harauz; Melitta Schachner

Background: The cell adhesion molecule L1 plays important roles in the developing and adult nervous system. Results: L1 is cleaved by myelin basic protein (MBP) yielding a L1 fragment that promotes L1-dependent functions. Conclusion: L1 functions in the nervous system depend on MBP. Significance: Study of the L1 and MBP functions may contribute to understanding the pathogenesis of demyelinating and neurodegenerative diseases. The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system.


BioMed Research International | 2014

Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity

Praveen Kumar; Raghavendra Singh; Arshed Nazmi; Dinesh Lakhanpal; Hardeep Kataria; Gurcharan Kaur

Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.

Collaboration


Dive into the Hardeep Kataria's collaboration.

Top Co-Authors

Avatar

Gurcharan Kaur

Guru Nanak Dev University

View shared research outputs
Top Co-Authors

Avatar

Renu Wadhwa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sunil C. Kaul

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sushil Kumar

Guru Nanak Dev University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sukhprit Singh

Guru Nanak Dev University

View shared research outputs
Researchain Logo
Decentralizing Knowledge