Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hardip R. Patel is active.

Publication


Featured researches published by Hardip R. Patel.


Nucleic Acids Research | 2012

Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA

Jeffrey Squires; Hardip R. Patel; Marco Nousch; Tennille Sibbritt; David T. Humphreys; Brian J. Parker; Catherine M. Suter; Thomas Preiss

The modified base 5-methylcytosine (m5C) is well studied in DNA, but investigations of its prevalence in cellular RNA have been largely confined to tRNA and rRNA. In animals, the two m5C methyltransferases NSUN2 and TRDMT1 are known to modify specific tRNAs and have roles in the control of cell growth and differentiation. To map modified cytosine sites across a human transcriptome, we coupled bisulfite conversion of cellular RNA with next-generation sequencing. We confirmed 21 of the 28 previously known m5C sites in human tRNAs and identified 234 novel tRNA candidate sites, mostly in anticipated structural positions. Surprisingly, we discovered 10 275 sites in mRNAs and other non-coding RNAs. We observed that distribution of modified cytosines between RNA types was not random; within mRNAs they were enriched in the untranslated regions and near Argonaute binding regions. We also identified five new sites modified by NSUN2, broadening its known substrate range to another tRNA, the RPPH1 subunit of RNase P and two mRNAs. Our data demonstrates the widespread presence of modified cytosines throughout coding and non-coding sequences in a transcriptome, suggesting a broader role of this modification in the post-transcriptional control of cellular RNA function.


PLOS ONE | 2012

Complexity of Murine Cardiomyocyte miRNA Biogenesis, Sequence Variant Expression and Function

David T. Humphreys; Carly J. Hynes; Hardip R. Patel; Grace H. Wei; Leah Cannon; Diane Fatkin; Catherine M. Suter; Jennifer L. Clancy; Thomas Preiss

microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ∼40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5′ start but common at the 3′ end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5′ isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5′ isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5′ most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy.


Chromosome Research | 2010

Non-homologous sex chromosomes of birds and snakes share repetitive sequences

Denis O'Meally; Hardip R. Patel; Rami Stiglec; Stephen D. Sarre; Arthur Georges; Jennifer A. Marshall Graves; Tariq Ezaz

Snake sex chromosomes provided Susumo Ohno with the material on which he based his theory of how sex chromosomes differentiate from autosomal pairs. Like birds, snakes have a ZZ male/ZW female sex chromosome system, in which the snake Z is a macrochromosome much the same size as the bird Z. However, the gene content shows clearly that the snake and bird Z chromosomes are completely non-homologous. The molecular aspect of W chromosome degeneration in snakes remains largely unexplored. We used comparative genomic hybridization to identify the female-specific region of the W chromosome in representative species of Australian snakes. Using this approach, we show that an increasingly complex suite of repeats accompanies the evolution of W chromosome heteromorphy. In particular, we found that while the python Liasis fuscus exhibits no sex-specific repeats and indeed, no cytologically recognizable sex-specific region, the colubrid Stegonotus cucullatus shows a large domain on the short arm of the W chromosome that consists of female-specific repeats, and the large W of Notechis scutatus is composed almost entirely of repetitive sequences, including Bkm and 18S rDNA-related elements. FISH mapping of both simple and complex probes shows patterns of repeat amplification concordant with the size of the female-specific region in each species examined. Mapping of intronic sequences of genes that are sex-linked in both birds (DMRT1) and snakes (CTNNB1) reveals massive amplification in discrete domains on the W chromosome of the elapid N. scutatus. Using chicken W chromosome paint, we demonstrate that repetitive sequences are shared between the sex chromosomes of birds and derived snakes. This could be explained by ancestral but as yet undetected shared synteny of bird and snake sex chromosomes or may indicate functional homology of the repeats and suggests that degeneration is a convergent property of sex chromosome evolution. We also establish that synteny of snake Z-linked genes has been conserved for at least 166 million years and that the snake Z consists of two conserved blocks derived from the same ancestral vertebrate chromosome.


Wiley Interdisciplinary Reviews - Rna | 2013

Mapping and significance of the mRNA methylome

Tennille Sibbritt; Hardip R. Patel; Thomas Preiss

Internal methylation of eukaryotic mRNAs in the form of N6‐methyladenosine (m6A) and 5‐methylcytidine (m5C) has long been known to exist, but progress in understanding its role was hampered by difficulties in identifying individual sites. This was recently overcome by high‐throughput sequencing‐based methods that mapped thousands of sites for both modifications throughout mammalian transcriptomes, with most sites found in mRNAs. The topology of m6A in mouse and human revealed both conserved and variable sites as well as plasticity in response to extracellular cues. Within mRNAs, m5C and m6A sites were relatively depleted in coding sequences and enriched in untranslated regions, suggesting functional interactions with post‐transcriptional gene control. Finer distribution analyses and preexisting literature point toward roles in the regulation of mRNA splicing, translation, or decay, through an interplay with RNA‐binding proteins and microRNAs. The methyltransferase (MTase) METTL3 ‘writes’ m6A marks on mRNA, whereas the demethylase FTO can ‘erase’ them. The RNA:m5C MTases NSUN2 and TRDMT1 have roles in tRNA methylation but they also act on mRNA. Proper functioning of these enzymes is important in development and there are clear links to human disease. For instance, a common variant of FTO is a risk allele for obesity carried by 1 billion people worldwide and mutations cause a lethal syndrome with growth retardation and brain deficits. NSUN2 is linked to cancer and stem cell biology and mutations cause intellectual disability. In this review, we summarize the advances, open questions, and intriguing possibilities in this emerging field that might be called RNA modomics or epitranscriptomics. WIREs RNA 2013, 4:437–461. doi: 10.1002/wrna.1166


Nature Communications | 2015

Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis

Monika Srivastava; Guowen Duan; Nadia J. Kershaw; Vicki Athanasopoulos; Janet H. C. Yeo; Toyoyuki Ose; Desheng Hu; Simon H. J. Brown; Slobodan Jergic; Hardip R. Patel; Alvin Pratama; Sashika Richards; Anil Verma; E. Yvonne Jones; Vigo Heissmeyer; Thomas Preiss; Nicholas E. Dixon; Mark M. W. Chong; Jeffrey J. Babon; Carola G. Vinuesa

Roquin is an RNA-binding protein that prevents autoimmunity and inflammation via repression of bound target mRNAs such as inducible costimulator (Icos). When Roquin is absent or mutated (Roquinsan), Icos is overexpressed in T cells. Here we show that Roquin enhances Dicer-mediated processing of pre-miR-146a. Roquin also directly binds Argonaute2, a central component of the RNA-induced silencing complex, and miR-146a, a microRNA that targets Icos mRNA. In the absence of functional Roquin, miR-146a accumulates in T cells. Its accumulation is not due to increased transcription or processing, rather due to enhanced stability of mature miR-146a. This is associated with decreased 3′ end uridylation of the miRNA. Crystallographic studies reveal that Roquin contains a unique HEPN domain and identify the structural basis of the ‘san’ mutation and Roquin’s ability to bind multiple RNAs. Roquin emerges as a protein that can bind Ago2, miRNAs and target mRNAs, to control homeostasis of both RNA species.


Cytogenetic and Genome Research | 2009

The First Cytogenetic Map of the Tuatara, Sphenodon punctatus

Denis O'Meally; Hilary C. Miller; Hardip R. Patel; Jennifer A. Marshall Graves; Tariq Ezaz

Tuatara, Sphenodon punctatus, is the last survivor of the distinctive reptilian order Rhynchocephalia and is a species of extraordinary zoological interest, yet only recently have genomic analyses been undertaken. The karyotype consists of 28 macrochromosomes and 8 microchromosomes. A Bacterial Artificial Chromosome (BAC) library constructed for this species has allowed the first characterization of the tuatara genome. Sequence analysis of 11 fully sequenced BAC clones (∼0.03% coverage) increased the estimate of genome wide GC composition to 47.8%, the highest reported for any vertebrate. Our physical mapping data demonstrate discrete accumulation of repetitive elements in large blocks on some chromosomes, particularly the microchromosomes. We suggest that the large size of the genome (5.0 pg/haploid) is due to the accumulation of repetitive sequences. The microchromosomes of tuatara are rich in repetitive sequences, and the observation of one animal that lacked a microchromosome pair suggests that at least this microchromosome is unnecessary for survival. We used BACs bearing orthologues of known genes to construct a low-coverage cytogenetic map containing 21 markers. We identified a region on chromosome 4 of tuatara that shares homology with 7 Mb of chicken chromosome 2, and therefore the orthologous region of the snake Z chromosome. We identified a region on tuatara chromosome 3 that is orthologous to the chicken Z, and a region on chromosome 9 orthologous to the mammalian X. Since the tuatara determines sex by temperature and has no sex chromosomes, this implies that different tuatara autosome regions are homologous with the sex chromosomes of mammals, birds and snakes. We have identified anchor BAC clones that can be used to reliably mark chromosomes 3–7, 10 and 13, some of which are difficult to distinguish based on morphology alone. Fluorescence in situ hybridization mapping of 18S rDNA confirms the presence of a single NOR located on the long arm of chromosome 7, as previously identified by silver staining. Further work to construct a dense physical map will lead to a better understanding of the dynamics of genome evolution and organization in this isolated species.


Molecular Biology and Evolution | 2016

Evolution of Vertebrate Phototransduction: Cascade Activation

Trevor D. Lamb; Hardip R. Patel; Aaron Chuah; Riccardo Natoli; Wayne I. L. Davies; Nathan S. Hart; Shaun P. Collin; David M. Hunt

We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation.


Journal of Translational Medicine | 2015

Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren’s syndrome

Angad S. Johar; Claudio Mastronardi; Adriana Rojas-Villarraga; Hardip R. Patel; Aaron Chuah; Kaiman Peng; Angela Higgins; Peter J. Milburn; Stephanie Palmer; Maria Fernanda Silva-Lara; Jorge I. Vélez; Daniel M. Andrews; Matthew A. Field; Gavin A. Huttley; Christopher C. Goodnow; Juan-Manuel Anaya; Mauricio Arcos-Burgos

BackgroundMultiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases.MethodsThe DNA of eight patients affected by MAS [all of whom presenting with Sjögren’s syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic–deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity.ResultsEleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very well known autoimmunity genes.ConclusionsNovel and rare exonic mutations that may account for autoimmunity were identified. Among those, the LRP1/STAT6 novel mutation has the strongest case for being categorised as potentially causative of MAS given the presence of intriguing patterns of functional interaction with other major genes shaping autoimmunity.


Autoimmunity Reviews | 2015

Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture

Angad S. Johar; Juan-Manuel Anaya; Daniel M. Andrews; Hardip R. Patel; Matthew A. Field; Christopher C. Goodnow; Mauricio Arcos-Burgos

Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. Many studies have shown that the strategy has been broad and proficient due to its ability in detecting a high proportion of disease causing variants, using only a small portion of the genome. In this review we outline the main steps involved in WES, the comprehensive analysis of the massive data obtained including the genomic capture, amplification, sequencing, alignment, curating, filtering and genetic analysis to determine the presence of candidate variants with potential pathogenic/functional effect. Further, we propose that the multiple autoimmune syndrome, an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of major effect underpinning the lost of self-tolerance.


Genome Research | 2009

Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28

Margaret L. Delbridge; Hardip R. Patel; Paul D. Waters; Daniel McMillan; Jennifer A. Marshall Graves

Comparative gene mapping of human X-borne genes in marsupials defined an ancient conserved region and a recently added region of the eutherian X, and the separate evolutionary origins of these regions was confirmed by their locations on chicken chromosomes 4p and 1q, respectively. However, two groups of genes, from the pericentric region of the short arm of the human X (at Xp11) and a large group of genes from human Xq28, were thought to be part of a third evolutionary block, being located in a single region in fish, but mapping to chicken chromosomes other than 4p and 1q. We tested this hypothesis by comparative mapping of genes in these regions. Our gene mapping results show that human Xp11 genes are located on the marsupial X chromosome and platypus chromosome 6, indicating that the Xp11 region was part of original therian X chromosome. We investigated the evolutionary origin of genes from human Xp11 and Xq28, finding that chicken paralogs of human Xp11 and Xq28 genes had been misidentified as orthologs, and their true orthologs are represented in the chicken EST database, but not in the current chicken genome assembly. This completely undermines the evidence supporting a separate evolutionary origin for this region of the human X chromosome, and we conclude, instead, that it was part of the ancient autosome, which became the conserved region of the therian X chromosome 166 million years ago.

Collaboration


Dive into the Hardip R. Patel's collaboration.

Top Co-Authors

Avatar

Aaron Chuah

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Thomas Preiss

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauricio Arcos-Burgos

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Claudio Mastronardi

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Clancy

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Angad S. Johar

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E.J. Rasko

Royal Prince Alfred Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge