Hari Chaluvadi
Missouri University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hari Chaluvadi.
Journal of Chemical Physics | 2012
J. D. Builth-Williams; Susan Bellm; D. B. Jones; Hari Chaluvadi; Don H. Madison; Chuangang Ning; Birgit Lohmann; M. J. Brunger
Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b(2) and 10a(1) orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of -5°, -10°, and -15°. The ejected electron angular range encompasses both the binary and recoil peaks in the triple differential cross section. Corresponding theoretical calculations have been performed using the molecular 3-body distorted wave model and are in reasonably good agreement with the present experiment.
Journal of Chemical Physics | 2012
Susan Bellm; J. D. Builth-Williams; D. B. Jones; Hari Chaluvadi; Don H. Madison; Chuangang Ning; Feng Wang; Xiaoguang Ma; Birgit Lohmann; M. J. Brunger
Cross section data for electron scattering from DNA are important for modelling radiation damage in biological systems. Triply differential cross sections for the electron impact ionization of the highest occupied outer valence orbital of tetrahydrofurfuryl alcohol, which can be considered as an analogue to the deoxyribose backbone molecule in DNA, have been measured using the (e,2e) technique. The measurements have been performed with coplanar asymmetric kinematics at an incident electron energy of 250 eV, an ejected electron energy of 20 eV, and at scattered electron angles of -5°, -10°, and -15°. Experimental results are compared with corresponding theoretical calculations performed using the molecular 3-body distorted wave model. Some important differences are observed between the experiment and calculations.
Journal of Chemical Physics | 2013
J. D. Builth-Williams; Susan Bellm; Luca Chiari; Penny Thorn; D. B. Jones; Hari Chaluvadi; Don H. Madison; Chuangang Ning; Birgit Lohmann; G. B. da Silva; M. J. Brunger
Triple differential cross section measurements for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane are presented. For each molecule, experimental measurements were performed using the (e,2e) technique in asymmetric coplanar kinematics with an incident electron energy of 250 eV and an ejected electron energy of 20 eV. With the scattered electrons being detected at -5°, the angular distributions of the ejected electrons in the binary and recoil regions were observed. These measurements are compared with calculations performed within the molecular 3-body distorted wave model. Here, reasonable agreement was observed between the theoretical model and the experimental measurements. These measurements are compared with results from a recent study on tetrahydrofuran [D. B. Jones, J. D. Builth-Williams, S. M. Bellm, L. Chiari, C. G. Ning, H. Chaluvadi, B. Lohmann, O. Ingolfsson, D. Madison, and M. J. Brunger, Chem. Phys. Lett. 572, 32 (2013)] in order to evaluate the influence of structure on the dynamics of the ionization process across this series of cyclic ethers.
Journal of Chemical Physics | 2011
Kate L. Nixon; Andrew James Murray; Hari Chaluvadi; Chuangang Ning; Don H. Madison
Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH(4)) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t(2) and the NHOMO is predominantly s-type labeled 2a(1). Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO state and less satisfactory agreement for the NHOMO state. The molecular NHOMO results are also compared with the ionization of the 2s shell of neon which is the isoelectronic atom.
Journal of Chemical Physics | 2012
Kate Nixon; Andrew James Murray; Hari Chaluvadi; Sadek Amami; Don H. Madison; Chuangang Ning
Low energy experimental and theoretical triple differential cross sections for the highest occupied molecular orbital of methane (1t(2)) and for the 2p atomic orbital of neon are presented and compared. These targets are iso-electronic, each containing 10 electrons and the chosen orbital within each target has p-electron character. Observation of the differences and similarities of the cross sections for these two species hence gives insight into the different scattering mechanisms occurring for atomic and molecular targets. The experiments used perpendicular, symmetric kinematics with outgoing electron energies between 1.5 eV and 30 eV for CH(4) and 2.5 eV and 25 eV for neon. The experimental data from these targets are compared with theoretical predictions using a distorted-wave Born approximation. Reasonably good agreement is seen between the experiment and theory for neon while mixed results are observed for CH(4). This is most likely due to approximations of the target orientation made within the model.
Journal of Chemical Physics | 2013
Kate Nixon; Andrew James Murray; Hari Chaluvadi; Chuangang Ning; J. Colgan; Don H. Madison
Experimental and theoretical triple differential cross sections (TDCS) from ammonia are presented in the low energy regime with outgoing electron energies from 20 eV down to 1.5 eV. Ionization measurements from the 3a1, 1e1, and 2a1 molecular orbitals were taken in a coplanar geometry. Data from the 3a1 and 1e1 orbitals were also obtained in a perpendicular plane geometry. The data are compared to predictions from the distorted wave Born approximation and molecular-three-body distorted wave models. The cross sections for the 3a1 and 1e1 orbitals that have p-like character were found to be similar, and were different to that of the 2a1 orbital which has s-like character. These observations are not reproduced by theory, which predicts the structure of the TDCS for all orbitals should be similar. Comparisons are also made to results from experiment and theory for the iso-electronic targets neon and methane.
Journal of Chemical Physics | 2012
Shenyue Xu; Hari Chaluvadi; Xueguang Ren; Thomas Pflüger; Arne Senftleben; Chuangang Ning; S. Yan; Peng Zhang; Jie Yang; Xinwen Ma; Joachim H. Ullrich; Don H. Madison; Alexander Dorn
Single ionization of the methane (CH(4)) 1t(2) orbital by 54 eV electron impact has been studied experimentally and theoretically. The measured triple differential cross sections cover nearly a 4π solid angle for the emission of low energy electrons and a range of projectile scattering angles. Experimental data are compared with theoretical calculations from the distorted wave Born approximation and the molecular three-body distorted wave models. It is found that theory can give a proper description of the main features of experimental cross section only at smaller scattering angles. For larger scattering angles, significant discrepancies between experiment and theory are observed. The importance of the strength of nuclear scattering from the H-nuclei was theoretically tested by reducing the distance between the carbon nuclei and the hydrogen nuclei and improved agreement with experiment was found for both the scattering plane and the perpendicular plane.
Journal of Chemical Physics | 2014
J. D. Builth-Williams; G. B. da Silva; Luca Chiari; D. B. Jones; Hari Chaluvadi; Don H. Madison; M. J. Brunger
We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either -10° or -15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing the limitations of the theoretical calculations. This study in turn facilitates an improved understanding of the dynamics in the ionization process.
Journal of Physics B | 2015
Hari Chaluvadi; Zehra Nur Ozer; Mevlut Dogan; Chuangang Ning; J. Colgan; Don H. Madison
In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.
Journal of Physics: Conference Series | 2015
Zehra Nur Ozer; Hari Chaluvadi; Don H. Madison; Mevlut Dogan
We have studied electron impact ionization of H2 and N2 molecules at intermediate energies to look for possible two center interference effects experimentally and theoretically. Here we report a study of the interference factor I for 250 eV electron-impact ionization. The experimental measurements are performed using a crossed-beam-type electron-electron coincidence spectrometer and theoretical calculations are obtained using the Molecular Three Body Distorted Wave Approximation (M3DW). We found that the I-factor demonstrated strong evidence for two-center interference effects for both H2 and N2. We also found that the I-factor is more sensitive to projectile angular scans than to ejected electron energy scans which indicate that for the present set of kinematics the diffraction of the projectile from two scattering centers is more important than interference between electron waves emitted from two different centers.