Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hari H. Subramanian is active.

Publication


Featured researches published by Hari H. Subramanian.


The Journal of Neuroscience | 2008

The Midbrain Periaqueductal Gray Control of Respiration

Hari H. Subramanian; Ron J. Balnave; Gert Holstege

The midbrain periaqueductal gray (PAG) organizes basic survival behavior, which includes respiration. How the PAG controls respiration is not known. We studied the PAG control of respiration by injecting d,l-homocysteic acid in the PAG in unanesthetized precollicularly decerebrated cats. Injections in different parts of the PAG caused different respiratory effects. Stimulation in the dorsomedial PAG induced slow and deep breathing and dyspnea. Stimulation in the dorsolateral PAG resulted in active breathing and tachypnea consistent with the respiratory changes during fright and flight. Stimulation in the medial part of lateral PAG caused inspiratory apneusis. Stimulation in lateral parts of the lateral and ventrolateral PAG produced respiratory changes associated with vocalization (mews, alternating mews and hisses, or hisses). d,l-Homocysteic acid injections in the caudal ventrolateral PAG induced irregular breathing. These results demonstrate that the PAG exerts a strong influence on respiration, suggesting that it serves as the behavioral modulator of breathing.


Respiratory Physiology & Neurobiology | 2010

The role of serotonin in respiratory function and dysfunction

Gérard Hilaire; Nicolas Voituron; Clément Menuet; Ronaldo M. Ichiyama; Hari H. Subramanian; Mathias Dutschmann

Serotonin (5-HT) is a neuromodulator-transmitter influencing global brain function. Past and present findings illustrate a prominent role for 5-HT in the modulation of ponto-medullary autonomic circuits. 5-HT is also involved in the control of neurotrophic processes during pre- and postnatal development of neural circuits. The functional implications of 5-HT are particularly illustrated in the alterations to the serotonergic system, as seen in a wide range of neurological disorders. This article reviews the role of 5-HT in the development and control of respiratory networks in the ponto-medullary brainstem. The review further examines the role of 5-HT in breathing disorders occurring at different stages of life, in particular, the neonatal neurodevelopmental diseases such as Rett, sudden infant death and Prader-Willi syndromes, adult diseases such as sleep apnoea and mental illness linked to neurodegeneration.


The Journal of Neuroscience | 2009

The Nucleus Retroambiguus Control of Respiration

Hari H. Subramanian; Gert Holstege

The role of the nucleus retroambiguus (NRA) in the context of respiration control has been subject of debate for considerable time. To solve this problem, we chemically (using d, l-homocysteic acid) stimulated the NRA in unanesthetized precollicularly decerebrated cats and studied the respiratory effect via simultaneous measurement of tracheal pressure and electromyograms of diaphragm, internal intercostal (IIC), cricothyroid (CT), and external oblique abdominal (EO) muscles. NRA-stimulation 0–1 mm caudal to the obex resulted in recruitment of IIC muscle and reduction in respiratory frequency. NRA-stimulation 1–3 mm caudal to the obex produced vocalization along with CT activation and slight increase in tracheal pressure, but no change in respiratory frequency. NRA-stimulation 3–5 mm caudal to the obex produced CT muscle activation and an increase in respiratory frequency, but no vocalization. NRA-stimulation 5–8 mm caudal to the obex produced EO muscle activation and reduction in respiratory frequency. A change to the inspiratory effort was never observed, regardless of which NRA part was stimulated. The results demonstrate that NRA does not control eupneic inspiration but consists of topographically separate groups of premotor interneurons each producing detailed motor actions. These motor activities have in common that they require changes to eupneic breathing. Different combination of activation of these premotor neurons determines the final outcome, e.g., vocalization, vomiting, coughing, sneezing, mating posture, or child delivery. Higher brainstem regions such as the midbrain periaqueductal gray (PAG) decides which combination of NRA neurons are excited. In simple terms, the NRA is the piano, the PAG one of the piano players.


Advances in Experimental Medicine and Biology | 2010

Periaqueductal gray control of breathing

Hari H. Subramanian; Gert Holstege

Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and for speech in humans) an important mechanism for survival, respiration has to be changed. The caudal brainstem premotor respiratory centers need input from higher brain centers in order to change respiration according to the surrounding circumstances. One of the most important of such a higher brain centers is the midbrain periaqueductal gray (PAG). The PAG co-ordinates motor output, including respiratory changes based on input from limbic, prefrontal and anterior cingulate cortex regions. These areas integrate visual, auditory and somatosensory information in the context of basic survival mechanisms and relay the result to the PAG, which has access to respiratory control centers in the caudal brainstem. Through these pathways the PAG can change eupneic respiratory rhythm into the behavior necessary for that specific situation. We present data obtained from the cat and propose a functional framework for the breathing control pathways.


Brain Research | 2007

Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat

Hari H. Subramanian; Chin Moi Chow; Ron J. Balnave

In Nembutal anaesthetised, spontaneously breathing rats, stereotaxic mapping of the nucleus tractus solitarius (NTS) for respiratory neuronal activity was undertaken. Eight different types of respiratory cells were found between 0.25 and 1.5 mm lateral to midline, extending 0.5 mm caudal to 1.5 mm rostral to obex, and 0.4-1.5 mm below the dorsal surface. A study of the respiratory motor (diaphragm EMG) and neuronal responses to excitatory amino acid (EAA) stimulation of the NTS areas was undertaken. Electrical stimulation of the vagus nerve was employed to study the NTS cellular responses to activation of pulmonary afferents. The effects of chemical activation of the midbrain periaqueductal grey (PAG) on NTS respiratory neuronal activity were investigated. EAA microinjections into the ventrolateral NTS rostral to the obex resulted in an increase in respiratory motor frequency along with increases to inspiratory cell discharge, whilst microinjections into the medial NTS caudal to the obex caused respiratory depression. EAA stimulation of calamus scriptorius produced apnea. NTS inspiratory neurones were inhibited following stimulation of ipsilateral vagus nerve, suggesting their involvement in the Hering-Breuer reflex pathway. PAG stimulation caused excitation of the NTS inspiratory cells indicating the presence of an excitatory respiratory pathway between the two nuclei. Following beta-adrenergic antagonist pre-treatment of ventrolateral NTS, EAA microinjections into PAG did not evoke a cardiorespiratory effect. Based on the various findings the role of NTS in organising respiration in the rat is discussed.


The Journal of Comparative Neurology | 2016

Two different motor systems are needed to generate human speech

Gert Holstege; Hari H. Subramanian

Vocalizations such as mews and cries in cats or crying and laughter in humans are examples of expression of emotions. These vocalizations are generated by the emotional motor system, in which the mesencephalic periaqueductal gray (PAG) plays a central role, as demonstrated by the fact that lesions in the PAG lead to complete mutism in cats, monkeys, as well as in humans. The PAG receives strong projections from higher limbic regions and from the anterior cingulate, insula, and orbitofrontal cortical areas. In turn, the PAG has strong access to the caudal medullary nucleus retroambiguus (NRA). The NRA is the only cell group that has direct access to the motoneurons involved in vocalization, i.e., the motoneuronal cell groups innervating soft palate, pharynx, and larynx as well as diaphragm, intercostal, abdominal, and pelvic floor muscles. Together they determine the intraabdominal, intrathoracic, and subglottic pressure, control of which is necessary for generating vocalization. Only humans can speak, because, via the lateral component of the volitional or somatic motor system, they are able to modulate vocalization into words and sentences. For this modulation they use their motor cortex, which, via its corticobulbar fibers, has direct access to the motoneurons innervating the muscles of face, mouth, tongue, larynx, and pharynx. In conclusion, humans generate speech by activating two motor systems. They generate vocalization by activating the prefrontal‐PAG‐NRA‐motoneuronal pathway, and, at the same time, they modulate this vocalization into words and sentences by activating the corticobulbar fibers to the face, mouth, tongue, larynx, and pharynx motoneurons. J. Comp. Neurol. 524:1558–1577, 2016.


The Journal of Comparative Neurology | 2015

Two different motor systems generate human speech

Gert Holstege; Hari H. Subramanian

Vocalizations such as mews and cries in cats or crying and laughter in humans are examples of expression of emotions. These vocalizations are generated by the emotional motor system, in which the mesencephalic periaqueductal gray (PAG) plays a central role, as demonstrated by the fact that lesions in the PAG lead to complete mutism in cats, monkeys, as well as in humans. The PAG receives strong projections from higher limbic regions and from the anterior cingulate, insula, and orbitofrontal cortical areas. In turn, the PAG has strong access to the caudal medullary nucleus retroambiguus (NRA). The NRA is the only cell group that has direct access to the motoneurons involved in vocalization, i.e., the motoneuronal cell groups innervating soft palate, pharynx, and larynx as well as diaphragm, intercostal, abdominal, and pelvic floor muscles. Together they determine the intraabdominal, intrathoracic, and subglottic pressure, control of which is necessary for generating vocalization. Only humans can speak, because, via the lateral component of the volitional or somatic motor system, they are able to modulate vocalization into words and sentences. For this modulation they use their motor cortex, which, via its corticobulbar fibers, has direct access to the motoneurons innervating the muscles of face, mouth, tongue, larynx, and pharynx. In conclusion, humans generate speech by activating two motor systems. They generate vocalization by activating the prefrontal‐PAG‐NRA‐motoneuronal pathway, and, at the same time, they modulate this vocalization into words and sentences by activating the corticobulbar fibers to the face, mouth, tongue, larynx, and pharynx motoneurons. J. Comp. Neurol. 524:1558–1577, 2016.


Progress in Brain Research | 2014

The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species

Hari H. Subramanian; Gert Holstege

Modulation of respiration is a prerequisite for survival of the individual and of the species. For example, respiration has to be adjusted in case of speech, strenuous exercise, laughing, crying, or sudden escape from danger. Respiratory centers in pons and medulla generate the basic respiratory rhythm or eupnea, but they cannot modulate breathing in the context of emotional challenges, for which they need input from higher brain centers. In simple terms, the prefrontal cortex integrates visual, auditory, olfactory, and somatosensory information and informs subcortical structures such as amygdala, hypothalamus, and finally the midbrain periaqueductal gray (PAG) about the results. The PAG, in turn, generates the final motor output for basic survival, such as setting the level of all cells in the brain and spinal cord. Best known in this framework is determining the level of pain perception. The PAG also controls heart rate, blood pressure, micturition, sexual behavior, vocalization, and many other basic motor output systems. Within this context, the PAG also changes the eupneic respiratory rhythm into a breathing pattern necessary for basic survival. This review examines the latest developments regarding of how the PAG controls respiration.


The Journal of Comparative Neurology | 2013

Stimulation of the midbrain periaqueductal gray modulates preinspiratory neurons in the ventrolateral medulla in the rat in vivo

Hari H. Subramanian; Gert Holstege

The midbrain periaqueductal gray (PAG) is involved in many basic survival behaviors that affect respiration. We hypothesized that the PAG promotes these behaviors by changing the firing of preinspiratory (pre‐I) neurons in the pre‐Bötzinger complex, a cell group thought to be important in generating respiratory rhythm. We tested this hypothesis by recording single unit activity of pre‐Bötzinger pre‐I neurons during stimulation in different parts of the PAG. Stimulation in the dorsal PAG increased the firing of pre‐I neurons, resulting in tachypnea. Stimulation in the medial part of the lateral PAG converted the pre‐I neurons into inspiratory phase‐spanning cells, resulting in inspiratory apneusis. Stimulation in the lateral part of the lateral PAG generated an early onset of the pre‐I neuronal discharge, which continued throughout the inspiratory phase, while at the same time attenuating diaphragm contraction. Stimulation in the ventral part of the lateral PAG induced tachypnea but inhibited pre‐I cell firing, whereas stimulation in the ventrolateral PAG inhibited not only pre‐I cells but also the diaphragm, leading to apnea. These findings show that PAG stimulation changes the activity of the pre‐Bötzinger pre‐I neurons. These changes are in line with the different behaviors generated by the PAG, such as the dorsal PAG generating avoidance behavior, the lateral PAG generating fight and flight, and the ventrolateral PAG generating freezing and immobility. J. Comp. Neurol. 521: 3083–3098, 2013.


Progress in Brain Research | 2014

The Physiological significance of postinspiration in respiratory control

Mathias Dutschmann; Sarah E. Jones; Hari H. Subramanian; Davor Stanic; Tara G. Bautista

The term postinspiration is commonly used in the scientific literature concerned with neural generation and the control of breathing movements. Because postinspiration belongs functionally to the mechanical act of expiration, the physiological significance of postinspiration as a distinct phase of the breathing cycle is often underappreciated. The present review will give an overview of the physiological significance of postinspiratory motor activity in laryngeal adductor (constrictor) muscles and the crural diaphragm. The functional importance of postinspiratory motor activity is discussed for the eupneic respiratory cycle, and for various protective respiratory reflex mediations (e.g., sneeze, cough, and breath-hold). Also, the implications of recruited postinspiratory activity during nonventilatory behaviors such as vocalization, swallowing, or vomiting are underpinned. Finally, we describe the impact of absence or malfunction of postinspiratory motor function in neurological diseases.

Collaboration


Dive into the Hari H. Subramanian's collaboration.

Top Co-Authors

Avatar

Gert Holstege

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mathias Dutschmann

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah E. Jones

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Davor Stanic

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Tara G. Bautista

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge