Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hari Shroff is active.

Publication


Featured researches published by Hari Shroff.


Nature Methods | 2008

High-density mapping of single-molecule trajectories with photoactivated localization microscopy

Suliana Manley; Jennifer M. Gillette; George H. Patterson; Hari Shroff; Harald F. Hess; Eric Betzig; Jennifer Lippincott-Schwartz

We combined photoactivated localization microscopy (PALM) with live-cell single-particle tracking to create a new method termed sptPALM. We created spatially resolved maps of single-molecule motions by imaging the membrane proteins Gag and VSVG, and obtained several orders of magnitude more trajectories per cell than traditional single-particle tracking enables. By probing distinct subsets of molecules, sptPALM can provide insight into the origins of spatial and temporal heterogeneities in membranes.


Nature Methods | 2008

Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics

Hari Shroff; Catherine G. Galbraith; James A. Galbraith; Eric Betzig

We demonstrate live-cell super-resolution imaging using photoactivated localization microscopy (PALM). The use of photon-tolerant cell lines in combination with the high resolution and molecular sensitivity of PALM permitted us to investigate the nanoscale dynamics within individual adhesion complexes (ACs) in living cells under physiological conditions for as long as 25 min, with half of the time spent collecting the PALM images at spatial resolutions down to ∼60 nm and frame rates as short as 25 s. We visualized the formation of ACs and measured the fractional gain and loss of individual paxillin molecules as each AC evolved. By allowing observation of a wide variety of nanoscale dynamics, live-cell PALM provides insights into molecular assembly during the initiation, maturation and dissolution of cellular processes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes

Hari Shroff; Catherine G. Galbraith; James A. Galbraith; Helen White; Jennifer M. Gillette; Scott G. Olenych; Michael W. Davidson; Eric Betzig

Accurate determination of the relative positions of proteins within localized regions of the cell is essential for understanding their biological function. Although fluorescent fusion proteins are targeted with molecular precision, the position of these genetically expressed reporters is usually known only to the resolution of conventional optics (≈200 nm). Here, we report the use of two-color photoactivated localization microscopy (PALM) to determine the ultrastructural relationship between different proteins fused to spectrally distinct photoactivatable fluorescent proteins (PA-FPs). The nonperturbative incorporation of these endogenous tags facilitates an imaging resolution in whole, fixed cells of ≈20–30 nm at acquisition times of 5–30 min. We apply the technique to image different pairs of proteins assembled in adhesion complexes, the central attachment points between the cytoskeleton and the substrate in migrating cells. For several pairs, we find that proteins that seem colocalized when viewed by conventional optics are resolved as distinct interlocking nano-aggregates when imaged via PALM. The simplicity, minimal invasiveness, resolution, and speed of the technique all suggest its potential to directly visualize molecular interactions within cellular structures at the nanometer scale.


PLOS Biology | 2009

Self-Organization of the Escherichia Coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy

Derek Greenfield; Ann L. McEvoy; Hari Shroff; Gavin E. Crooks; Ned S. Wingreen; Eric Betzig; Jan Liphardt

Photoactivated localization microscopy analysis of chemotaxis receptors in bacteria suggests that the non-random organization of these proteins results from random self-assembly of clusters without direct cytoskeletal involvement or active transport.


Nature Methods | 2012

Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy

Andrew G. York; Sapun H. Parekh; Damian Dalle Nogare; Robert S. Fischer; Kelsey Temprine; Marina Mione; Ajay B. Chitnis; Christian A Combs; Hari Shroff

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.


Neuron | 2010

Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines

Nicholas A. Frost; Hari Shroff; Huihui Kong; Eric Betzig; Thomas A. Blanpied

Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index of filament polymerization rate, was highly heterogeneous within individual spines. Most strikingly, molecular velocity was elevated in discrete, well-separated foci occurring not principally at the spine tip, but in subdomains throughout the spine, including the neck. Whereas actin velocity on filaments at the synapse was substantially elevated, at the endocytic zone there was no enhanced polymerization activity. We conclude that actin subserves spatially diverse, independently regulated processes throughout spines. Perisynaptic actin forms a uniquely dynamic structure well suited for direct, active regulation of the synapse.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Multilayer three-dimensional super resolution imaging of thick biological samples

Alipasha Vaziri; Jianyong Tang; Hari Shroff; Charles V. Shank

Recent advances in optical microscopy have enabled biological imaging beyond the diffraction limit at nanometer resolution. A general feature of most of the techniques based on photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM) has been the use of thin biological samples in combination with total internal reflection, thus limiting the imaging depth to a fraction of an optical wavelength. However, to study whole cells or organelles that are typically up to 15 μm deep into the cell, the extension of these methods to a three-dimensional (3D) super resolution technique is required. Here, we report an advance in optical microscopy that enables imaging of protein distributions in cells with a lateral localization precision better than 50 nm at multiple imaging planes deep in biological samples. The approach is based on combining the lateral super resolution provided by PALM with two-photon temporal focusing that provides optical sectioning. We have generated super-resolution images over an axial range of ≈10 μm in both mitochondrially labeled fixed cells, and in the membranes of living S2 Drosophila cells.


Nature Methods | 2011

Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes

Andrew G. York; Alireza Ghitani; Alipasha Vaziri; Michael W. Davidson; Hari Shroff

We demonstrate three-dimensional (3D) super-resolution microscopy in whole fixed cells using photoactivated localization microscopy (PALM). The use of the bright, genetically expressed fluorescent marker photoactivatable monomeric (m)Cherry (PA-mCherry1) in combination with near diffraction-limited confinement of photoactivation using two-photon illumination and 3D localization methods allowed us to investigate a variety of cellular structures at <50 nm lateral and <100 nm axial resolution. Compared to existing methods, we have substantially reduced excitation and bleaching of unlocalized markers, which allows us to use 3D PALM imaging with high localization density in thick structures. Our 3D localization algorithms, which are based on cross-correlation, do not rely on idealized noise models or specific optical configurations. This allows instrument design to be flexible. By generating appropriate fusion constructs and expressing them in Cos7 cells, we could image invaginations of the nuclear membrane, vimentin fibrils, the mitochondrial network and the endoplasmic reticulum at depths of greater than 8 μm.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans

Yicong Wu; Alireza Ghitani; Ryan Christensen; Anthony Santella; Zhuo Du; Gary Rondeau; Zhirong Bao; Daniel A. Colón-Ramos; Hari Shroff

The Caenorhabditis elegans embryo is a powerful model for studying neural development, but conventional imaging methods are either too slow or phototoxic to take full advantage of this system. To solve these problems, we developed an inverted selective plane illumination microscopy (iSPIM) module for noninvasive high-speed volumetric imaging of living samples. iSPIM is designed as a straightforward add-on to an inverted microscope, permitting conventional mounting of specimens and facilitating SPIM use by development and neurobiology laboratories. iSPIM offers a volumetric imaging rate 30× faster than currently used technologies, such as spinning-disk confocal microscopy, at comparable signal-to-noise ratio. This increased imaging speed allows us to continuously monitor the development of C, elegans embryos, scanning volumes every 2 s for the 14-h period of embryogenesis with no detectable phototoxicity. Collecting ∼25,000 volumes over the entirety of embryogenesis enabled in toto visualization of positions and identities of cell nuclei. By merging two-color iSPIM with automated lineaging techniques we realized two goals: (i) identification of neurons expressing the transcription factor CEH-10/Chx10 and (ii) visualization of their neurodevelopmental dynamics. We found that canal-associated neurons use somal translocation and amoeboid movement as they migrate to their final position in the embryo. We also visualized axon guidance and growth cone dynamics as neurons circumnavigate the nerve ring and reach their targets in the embryo. The high-speed volumetric imaging rate of iSPIM effectively eliminates motion blur from embryo movement inside the egg case, allowing characterization of dynamic neurodevelopmental events that were previously inaccessible.


Nature Methods | 2013

Instant super-resolution imaging in live cells and embryos via analog image processing

Andrew G. York; Panagiotis Chandris; Damian Dalle Nogare; Jeffrey Head; Peter Wawrzusin; Robert S. Fischer; Ajay B. Chitnis; Hari Shroff

Existing super-resolution fluorescence microscopes compromise acquisition speed to provide subdiffractive sample information. We report an analog implementation of structured illumination microscopy that enables three-dimensional (3D) super-resolution imaging with a lateral resolution of 145 nm and an axial resolution of 350 nm at acquisition speeds up to 100 Hz. By using optical instead of digital image-processing operations, we removed the need to capture, store and combine multiple camera exposures, increasing data acquisition rates 10- to 100-fold over other super-resolution microscopes and acquiring and displaying super-resolution images in real time. Low excitation intensities allow imaging over hundreds of 2D sections, and combined physical and computational sectioning allow similar depth penetration to spinning-disk confocal microscopy. We demonstrate the capability of our system by imaging fine, rapidly moving structures including motor-driven organelles in human lung fibroblasts and the cytoskeleton of flowing blood cells within developing zebrafish embryos.

Collaboration


Dive into the Hari Shroff's collaboration.

Top Co-Authors

Avatar

Yicong Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew G. York

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Abhishek Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ryan Christensen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter W. Winter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric Betzig

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Min Guo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter Wawrzusin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge