Harini Kilambi
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harini Kilambi.
Dental Materials | 2009
Harini Kilambi; Neil B. Cramer; Lauren Schneidewind; Parag K. Shah; Jeffrey W. Stansbury; Christopher N. Bowman
OBJECTIVES This study evaluates the performance of highly reactive novel monomethacrylates characterized by various secondary moieties as reactive diluent alternatives to TEGDMA in BisGMA filled dental resins. We hypothesize that these monomers improve material properties and kinetics over TEGDMA because of their unique polymerization behavior. METHODS The cure rates and final double bond conversion of the resins were measured using real-time FTIR spectroscopy. The glass transition temperature and storage modulus of the formed polymers were measured using dynamic mechanical analysis. Flexural modulus and flexural strength values were obtained using a three-point bending flexural test. RESULTS Polymerization kinetics and polymer mechanical properties were evaluated for the novel resin composites. It was observed that upon the use of novel monomethacrylates as reactive diluents, polymerization kinetics increased by up to 3-fold accompanied by increases in the extent of cure from 5% to 13% as compared to the BisGMA/TEGDMA control. Polymer composites formed from resins of BisGMA/novel monomethacrylates exhibited comparable T(g) values to the control, along with 27-37% reductions in the glass transition half widths indicating the formation of more homogeneous polymeric networks. The BisGMA/monomethacrylate formulations exhibited equivalent flexural modulus and flexural strength values relative to BisGMA/TEGDMA. SIGNIFICANCE Formulations containing novel monovinyl methacrylates exhibit dramatically increased curing rates while also exhibiting superior or at least comparable composite polymer mechanical properties. Thus, these types of materials are attractive for use as reactive diluent alternatives to TEGDMA in dental formulations.
Macromolecules | 2007
Harini Kilambi; Jeffrey W. Stansbury; Christopher N. Bowman
Polymer | 2005
Harini Kilambi; Eric R. Beckel; Kathryn A. Berchtold; Jeffrey W. Stansbury; Christopher N. Bowman
Polymer | 2007
Harini Kilambi; Sirish K. Reddy; Lauren Schneidewind; Jeffrey W. Stansbury; Christopher N. Bowman
Chemistry of Materials | 2007
Harini Kilambi; Sirish K. Reddy; Eric R. Beckel; and Jeffrey W. Stansbury; Christopher N. Bowman
Journal of Polymer Science Part A | 2009
Harini Kilambi; Sirish K. Reddy; Lauren Schneidewind; Jeffrey W. Stansbury; Christopher N. Bowman
Journal of Polymer Science Part A | 2007
Harini Kilambi; Daniel Konopka; Jeffrey W. Stansbury; Christopher N. Bowman
Macromolecules | 2007
Harini Kilambi; Sirish K. Reddy; Lauren Schneidewind; Tai Yeon Lee; Jeffrey W. Stansbury; Christopher N. Bowman
Journal of Polymer Science Part A | 2008
Harini Kilambi; Jeffrey W. Stansbury; Christopher N. Bowman
Macromolecules | 2007
Harini Kilambi; Sirish K. Reddy; Christopher N. Bowman