Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haris G. Vikis is active.

Publication


Featured researches published by Haris G. Vikis.


Cellular Signalling | 2003

Mechanisms of regulating the Raf kinase family

Huira Chong; Haris G. Vikis; Kun-Liang Guan

The MAP Kinase pathway is a key signalling mechanism that regulates many cellular functions such as cell growth, transformation and apoptosis. One of the essential components of this pathway is the serine/threonine kinase, Raf. Raf (MAPKK kinase, MAPKKK) relays the extracellular signal from the receptor/Ras complex to a cascade of cytosolic kinases by phosphorylating and activating MAPK/ERK kinase (MEK; MAPK kinase, MAPKK) that phosphorylates and activates extracellular signal regulated kinase (ERK; mitogen-activated protein kinase, MAPK), which phosphorylates various cytoplasmic and nuclear proteins. Regulation of both Ras and Raf is crucial in the proper maintenance of cell growth as oncogenic mutations in these genes lead to high transforming activity. Ras is mutated in 30% of all human cancers and B-Raf is mutated in 60% of malignant melanomas. The mechanisms that regulate the small GTPase Ras as well as the downstream kinases MEK and extracellular signal regulated kinase (ERK) are well understood. However, the regulation of Raf is complex and involves the integration of other signalling pathways as well as intramolecular interactions, phosphorylation, dephosphorylation and protein-protein interactions. From studies using mammalian isoforms of Raf, as well as C. elegans lin45-Raf, common patterns and unique differences of regulation have emerged. This review will summarize recent findings on the regulation of Raf kinase.


Nature Genetics | 2011

Principles for the post-GWAS functional characterization of cancer risk loci

Matthew L. Freedman; Alvaro N.A. Monteiro; Simon A. Gayther; Gerhard A. Coetzee; Angela Risch; Christoph Plass; Graham Casey; Mariella De Biasi; Christopher S. Carlson; David Duggan; Michael A. James; Pengyuan Liu; Jay W. Tichelaar; Haris G. Vikis; Ming You; Ian G. Mills

Genome wide association studies (GWAS) have identified more than 200 mostly new common low-penetrance susceptibility loci for cancers. The predicted risk associated with each locus is generally modest (with a per-allele odds ratio typically less than 2) and so, presumably, are the functional effects of individual genetic variants conferring disease susceptibility. Perhaps the greatest challenge in the ‘post-GWAS’ era is to understand the functional consequences of these loci. Biological insights can then be translated to clinical benefits, including reliable biomarkers and effective strategies for screening and disease prevention. The purpose of this article is to propose principles for the initial functional characterization of cancer risk loci, with a focus on non-coding variants, and to define ‘post-GWAS’ functional characterization. By December 2010, there were 1,212 published GWAS studies1 reporting significant (P < 5 × 10−8) associations for 210 traits (Table 1), and the Catalog of Published GWAS states that by March 2011, 812 publications reported 3,977 SNP associations1. This is likely a small fraction of the common susceptibility loci of low penetrance that will eventually be identified. Despite these successes in identifying risk loci, the causal variant and/or the molecular basis of risk etiology has been determined for only a small fraction of these associations2–4. Plausible candidate genes can be based on proximity to risk loci, but few have so far been defined in a more systematic manner (Supplementary Table 1). Table 1 The genomic context in which a variant is found can be used as preliminary functional analysis Increased investment in post-GWAS functional characterization of risk loci5 has now been advocated across diseases and for cardiovascular disease and diabetes6. For cancer biology, the complex interplay between genetics and the environment in many cancers poses a particularly exciting challenge for post-GWAS research. Here we suggest a systematic strategy for understanding how cancer-associated variants exert their effects. We mostly refer to SNPs throughout the paper, but we recognize that other types of common genetic (for example, copy number variants) or epigenetic variation may influence risk. Our understanding of the way in which a risk variant initiates disease pathogenesis progresses from statistical association between genetic variation and trait or disease variation to functionality and causality. The functional consequences of variants in protein-coding regions causing most monogenic disorders are more readily interpreted because we know the genetic code. For non-Mendelian or multifactorial traits, most of the common DNA variants have so far mapped to non-protein–coding regions2, where our understanding of functional consequences and causality is more rudimentary. Our hypothesis is that the trait-associated alleles exert their effects by influencing transcriptional output (such as transcript levels and splicing) through multiple mechanisms. We emphasize appropriate assays and models to test the functional effects of both SNPs and genes mapping to cancer predisposition loci. Although much of what is written is applicable to alleles discovered for any trait, the section on modeling gene effects will emphasize measuring cancer-related phenotypes. At some loci, multiple, independently associated risk alleles rather than single risk alleles may be functionally responsible for the occurrence of disease. Genotyping susceptibility loci (and their correlated variants) in multiple populations with different linkage disequilibrium (LD) structures may prove effective in substantially reducing the number of potentially causative variants (that is, the same causal variant may segregate in multiple populations), as shown for the FGFR2 locus in breast cancer7, but for most loci there will remain a set of potentially causative variants that cannot be separated at the statistical level from case-control genotype data. A susceptibility locus should be re-sequenced to ascertain all genetic variation, identifying candidate functional or causal variants and identifying candidate causal genes. Ideally, the identification of a causal SNP would be the next step to reveal the molecular mechanisms of risk modification. Practically, however, it is unclear what the criteria for causality should be, particularly in non-protein–coding regions. Thus, although we propose a framework set of analyses (Box 1), we acknowledge that the techniques and methods will continue to evolve with the field. Box 1 Strategies to progress from tag SNP to mechanism Target resequencing efforts using linkage disequilibrium (LD) structure. Use other populations to refine LD regions (for example African ancestry with shorter LD and more heterogeneity). Determine expression levels of nearby genes as a function of genotype at each locus (eQTL). Characterize gene regulatory regions by multiple empirical techniques bearing in mind that these are tissue and context specific. Combine regulatory regions with risk loci using coordinates from multiple reference genomes to capture all variation within the shorter regulatory regions that correlates with the tag SNP at each locus. Multiple experimental manipulations in model systems are needed to progressively implicate transcription units (genes) in mechanisms relevant to the associated loci: Knockouts of regulatory regions in animal (difficult and may be limited by functional redundancy, but new targeting methods in rat are promising) models followed by genome-wide expression analysis. Use chromatin association methods (3C, CHIA-PET) of regulatory regions to determine the identity of target genes (compare with eQTL data). Targeted gene perturbations in somatic cell models. Explore fully genome-wide eQTL and miRNA quantitative variation correlation in relevant tissues and cells. Explore epigenetic mechanisms in the context of genome-wide genetic polymorphism. Employ cell models and tissue reconstructions to evaluate mechanisms using gene perturbations and polymorphic variants. The human cancer cell xenograft has re-emerged as a minimal in vivo validation of these models. Above all, resist the temptation to equate any partial functional evidence as sufficient. Published claims of functional relevance should be fully evaluated using the steps detailed above.


Nature Genetics | 2001

Wildtype Kras2 can inhibit lung carcinogenesis in mice

Zhongqiu Zhang; Yian Wang; Haris G. Vikis; Leisa Johnson; Gongjie Liu; Jie Li; Marshall W. Anderson; Robert C. Sills; Hue-Hua L. Hong; Theodora R. Devereux; Tyler Jacks; Kun-Liang Guan; Ming You

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal–regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.


Nature Neuroscience | 2004

Activation of FAK and Src are receptor-proximal events required for netrin signaling

Weiquan Li; Jeeyong Lee; Haris G. Vikis; Seung Hee Lee; Guofa Liu; Jennifer Aurandt; Tang-Long Shen; Eric R. Fearon; Jun-Lin Guan; Min Han; Yi Rao; Kyonsoo Hong; Kun-Liang Guan

The axon guidance cue netrin is importantly involved in neuronal development. DCC (deleted in colorectal cancer) is a functional receptor for netrin and mediates axon outgrowth and the steering response. Here we show that different regions of the intracellular domain of DCC directly interacted with the tyrosine kinases Src and focal adhesion kinase (FAK). Netrin activated both FAK and Src and stimulated tyrosine phosphorylation of DCC. Inhibition of Src family kinases reduced DCC tyrosine phosphorylation and blocked both axon attraction and outgrowth of neurons in response to netrin. Mutation of the tyrosine phosphorylation residue in DCC abolished its function of mediating netrin-induced axon attraction. On the basis of our observations, we suggest a model in which DCC functions as a kinase-coupled receptor, and FAK and Src act immediately downstream of DCC in netrin signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG

Jennifer Aurandt; Haris G. Vikis; J. Silvio Gutkind; Natalie G. Ahn; Kun-Liang Guan

Semaphorins are axon guidance molecules that signal through the plexin family of receptors. Semaphorins also play a role in other processes such as immune regulation and tumorigenesis. However, the molecular signaling mechanisms downstream of plexin receptors have not been elucidated. Semaphorin 4D is the ligand for the plexin-B1 receptor and stimulation of the plexin-B1 receptor activates the small GTPase RhoA. Using the intracellular domain of plexin-B1 as an affinity ligand, two Rho-specific guanine nucleotide exchange factors, leukemia-associated Rho GEF (LARG; GEF, guanine nucleotide exchange factors) and PSD-95/Dlg/ZO-1 homology (PDZ)-RhoGEF, were isolated from mouse brain as plexin-B1-specific interacting proteins. LARG and PDZ-RhoGEF contain several functional domains, including a PDZ domain. Biochemical characterizations showed that the PDZ domain of LARG is directly involved in the interaction with the carboxy-terminal sequence of plexin-B1. Mutation of either the PDZ domain in LARG or the PDZ binding site in plexin-B1 eliminates the interaction. The interaction between plexin-B1 and LARG is specific for the PDZ domain of LARG and LARG does not interact with plexin-A1. A LARG-interaction defective mutant of the plexin-B1 receptor was created and was unable to stimulate RhoA activation. The data in this report suggest that LARG plays a critical role in plexin-B1 signaling to stimulate Rho activation and cytoskeletal reorganization.


Journal of the National Cancer Institute | 2008

Familial Aggregation of Common Sequence Variants on 15q24-25.1 in Lung Cancer

Pengyuan Liu; Haris G. Vikis; Daolong Wang; Yan Lu; Yian Wang; Ann G. Schwartz; Susan M. Pinney; Ping Yang; Mariza de Andrade; Gloria M. Petersen; Jonathan S. Wiest; Pamela R. Fain; Adi F. Gazdar; Colette Gaba; Henry Rothschild; Diptasri Mandal; Teresa Coons; Juwon Lee; Elena Kupert; Daniela Seminara; John D. Minna; Joan E. Bailey-Wilson; Xifeng Wu; Margaret R. Spitz; T. Eisen; Richard S. Houlston; Christopher I. Amos; Marshall W. Anderson; Ming You

Three recent genome-wide association studies identified associations between markers in the chromosomal region 15q24-25.1 and the risk of lung cancer. We conducted a genome-wide association analysis to investigate associations between single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, in which we used blood DNA from 194 case patients with familial lung cancer and 219 cancer-free control subjects. We identified associations between common sequence variants at 15q24-25.1 (that spanned LOC123688 [a hypothetical gene], PSMA4, CHRNA3, CHRNA5, and CHRNB4) and lung cancer. The risk of lung cancer was more than fivefold higher among those subjects who had both a family history of lung cancer and two copies of high-risk alleles rs8034191 (odds ratio [OR] = 7.20, 95% confidence interval [CI] = 2.21 to 23.37) or rs1051730 (OR = 5.67, CI = 2.21 to 14.60, both of which were located in the 15q24-25.1 locus, than among control subjects. Thus, further research to elucidate causal variants in the 15q24-25.1 locus that are associated with lung cancer is warranted.


Cancer Research | 2007

EGFR-T790M Is a Rare Lung Cancer Susceptibility Allele with Enhanced Kinase Activity

Haris G. Vikis; Mitsuo Sato; Michael A. James; Daolong Wang; Yian Wang; Min Wang; Dongmei Jia; Yan Liu; Joan E. Bailey-Wilson; Christopher I. Amos; Susan M. Pinney; Gloria M. Petersen; Mariza de Andrade; Ping Yang; Jonathan S. Wiest; Pamela R. Fain; Ann G. Schwartz; Adi F. Gazdar; Colette Gaba; Henry Rothschild; Diptasri Mandal; Elena Kupert; Daniela Seminara; Avinash Viswanathan; Ramaswamy Govindan; John D. Minna; Marshall W. Anderson; Ming You

The use of tyrosine kinase inhibitors (TKI) has yielded great success in treatment of lung adenocarcinomas. However, patients who develop resistance to TKI treatment often acquire a somatic resistance mutation (T790M) located in the catalytic cleft of the epidermal growth factor receptor (EGFR) enzyme. Recently, a report describing EGFR-T790M as a germ-line mutation suggested that this mutation may be associated with inherited susceptibility to lung cancer. Contrary to previous reports, our analysis indicates that the T790M mutation confers increased Y992 and Y1068 phosphorylation levels. In a human bronchial epithelial cell line, overexpression of EGFR-T790M displayed a growth advantage over wild-type (WT) EGFR. We also screened 237 lung cancer family probands, in addition to 45 bronchoalveolar tumors, and found that none of them contained the EGFR-T790M mutation. Our observations show that EGFR-T790M provides a proliferative advantage with respect to WT EGFR and suggest that the enhanced kinase activity of this mutant is the basis for rare cases of inherited susceptibility to lung cancer.


Clinical Cancer Research | 2009

Fine mapping of chromosome 6q23-25 region in familial lung cancer families reveals RGS17 as a likely candidate gene

Ming You; Daolong Wang; Pengyuan Liu; Haris G. Vikis; Michael A. James; Yan Lu; Yian Wang; Min Wang; Qiong Chen; Dongmei Jia; Yan Liu; Weidong Wen; Ping Yang; Zhifu Sun; Susan M. Pinney; Wei Zheng; Xiao-Ou Shu; Jirong Long; Yu-Tang Gao; Yong Bing Xiang; Wong Ho Chow; Nat Rothman; Gloria M. Petersen; Mariza de Andrade; Yanhong Wu; Julie M. Cunningham; Jonathan S. Wiest; Pamela R. Fain; Ann G. Schwartz; Luc Girard

Purpose: We have previously mapped a major susceptibility locus influencing familial lung cancer risk to chromosome 6q23-25. However, the causal gene at this locus remains undetermined. In this study, we further refined this locus to identify a single candidate gene, by fine mapping using microsatellite markers and association studies using high-density single nucleotide polymorphisms (SNP). Experimental Design: Six multigenerational families with five or more affected members were chosen for fine-mapping the 6q linkage region using microsatellite markers. For association mapping, we genotyped 24 6q-linked cases and 72 unrelated noncancer controls from the Genetic Epidemiology of Lung Cancer Consortium resources using the Affymetrix 500K chipset. Significant associations were validated in two independent familial lung cancer populations: 226 familial lung cases and 313 controls from the Genetic Epidemiology of Lung Cancer Consortium, and 154 familial cases and 325 controls from Mayo Clinic. Each familial case was chosen from one high-risk lung cancer family that has three or more affected members. Results: A region-wide scan across 6q23-25 found significant association between lung cancer susceptibility and three single nucleotide polymorphisms in the first intron of the RGS17 gene. This association was further confirmed in two independent familial lung cancer populations. By quantitative real-time PCR analysis of matched tumor and normal human tissues, we found that RGS17 transcript accumulation is highly and consistently increased in sporadic lung cancers. Human lung tumor cell proliferation and tumorigenesis in nude mice are inhibited upon knockdown of RGS17 levels. Conclusion:RGS17 is a major candidate for the familial lung cancer susceptibility locus on chromosome 6q23-25.


Nature Genetics | 2006

Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice.

Pengyuan Liu; Yian Wang; Haris G. Vikis; Anna Maciag; Daolong Wang; Yan Lu; Yan Liu; Ming You

We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps (∼1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.


Cancer Research | 2009

RGS17, an Overexpressed Gene in Human Lung and Prostate Cancer, Induces Tumor Cell Proliferation Through the Cyclic AMP-PKA-CREB Pathway

Michael A. James; Yan Lu; Yan Liu; Haris G. Vikis; Ming You

We have identified RGS17 as a commonly induced gene in lung and prostate tumors. Through microarray and gene expression analysis, we show that expression of RGS17 is up-regulated in 80% of lung tumors, and also up-regulated in prostate tumors. Through knockdown and overexpression of RGS17 in tumor cells, we show that RGS17 confers a proliferative phenotype and is required for the maintenance of the proliferative potential of tumor cells. We show through exon microarray, transcript analysis, and functional assays that RGS17 promotes cyclic AMP (cAMP)-responsive element binding protein (CREB)-responsive gene expression, increases cAMP levels, and enhances forskolin-mediated cAMP production. Furthermore, inhibition of cAMP-dependent kinase prevents tumor cell proliferation, and proliferation is partially rescued by RGS17 overexpression. In the present study, we show a role for RGS17 in the maintenance of tumor cell proliferation through induction of cAMP signaling and CREB phosphorylation. The prevalence of the induction of RGS17 in tumor tissues of various types further implicates its importance in the maintenance of tumor growth.

Collaboration


Dive into the Haris G. Vikis's collaboration.

Top Co-Authors

Avatar

Ming You

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Yian Wang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Pengyuan Liu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kun-Liang Guan

University of California

View shared research outputs
Top Co-Authors

Avatar

Yan Lu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Michael A. James

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Daolong Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Min Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge