Haris Kokotas
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haris Kokotas.
American Journal of Human Genetics | 2010
Asli Sirmaci; Seyra Erbek; Justin Price; Mingqian Huang; Duygu Duman; F. Basak Cengiz; Guney Bademci; Suna Tokgoz-Yilmaz; Burcu Öztürk Hişmi; Hilal Özdağ; Banu Turgut Ozturk; Sevsen Kulaksizoglu; Erkan Yildirim; Haris Kokotas; Maria Grigoriadou; Michael B. Petersen; Hashem Shahin; Moien Kanaan; Mary Claire King; Zheng-Yi Chen; Susan H. Blanton; Xue Zhong Liu; Stephan Züchner; Nejat Akar; Mustafa Tekin
More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromosome 6p25 in a consanguineous Turkish family. The degree of hearing loss was moderate to severe in affected individuals. We subsequently identified a nonsense mutation (p.E245X) in SERPINB6, which is located within the linkage interval for DFNB91 and encodes for an intracellular protease inhibitor. The p.E245X mutation cosegregated in the family as a completely penetrant autosomal-recessive trait and was absent in 300 Turkish controls. The mRNA expression of SERPINB6 was reduced and production of protein was absent in the peripheral leukocytes of homozygotes, suggesting that the hearing loss is due to loss of function of SERPINB6. We also demonstrated that SERPINB6 was expressed primarily in the inner ear hair cells. We propose that SERPINB6 plays an important role in the inner ear in the protection against leakage of lysosomal content during stress and that loss of this protection results in cell death and sensorineural hearing loss.
Clinical Genetics | 2012
Sandro Orru; Emmanouil Manolakos; Nicola Orrù; Haris Kokotas; Mascia; Carlo Carcassi; Michael B. Petersen
Orrù S, Manolakos E, Orrù N, Kokotas H, Mascia V, Carcassi C, Petersen MB. High frequency of the TARDBP p.Ala382Thr mutation in Sardinian patients with amyotrophic lateral sclerosis.
Journal of Clinical Investigation | 2013
Mustafa Tekin; Barry A. Chioza; Yoshifumi Matsumoto; Oscar Diaz-Horta; Harold E. Cross; Duygu Duman; Haris Kokotas; Heather L. Moore-Barton; Kazuto Sakoori; Maya Ota; Yuri S. Odaka; Joseph Foster; F. Basak Cengiz; Suna Tokgoz-Yilmaz; Oya Tekeli; Maria Grigoriadou; Michael B. Petersen; Ajith Sreekantan-Nair; Kay Gurtz; Xia Juan Xia; Arti Pandya; Michael A. Patton; Juan I. Young; Jun Aruga; Andrew H. Crosby
Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness.
Clinical Chemistry and Laboratory Medicine | 2011
Haris Kokotas; Maria Grigoriadou; Michael B. Petersen
Abstract Age-related macular degeneration (AMD) is a sight threatening eye disease that affects millions of humans over the age of 65 years. It is considered to be the major cause of irreversible blindness in the elderly population in the developed world. The disease is prevalent in Europe and the United States, which has a large number of individuals of European descent. AMD is characterized by a progressive loss of central vision attributable to degenerative and neovascular changes that occur in the interface between the neural retina and the underlying choroid. This location contains the retinal photoreceptors, the retinal pigmented epithelium, a basement membrane complex known as Bruch’s membrane and a network of choroidal capillaries. AMD is increasingly recognized as a complex genetic disorder where one or more genes contribute to an individual’s susceptibility to development of the condition, while the prevailing view is that the disease stems from the interaction of multiple genetic and environmental factors. Although it has been proposed that a threshold event occurs during normal aging, the sequelae of biochemical, cellular, and molecular events leading to AMD are not fully understood. Here, we review the clinical aspects of AMD and summarize the genes which have been reported to have a positive association with the disease.
Prenatal Diagnosis | 2008
Anastasia E. Konstantinidou; Charalampos Karadimas; Hans R. Waterham; Andrea Superti-Furga; Petros Kaminopetros; Maria Grigoriadou; Haris Kokotas; George Agrogiannis; Aglaia Giannoulia-Karantana; Efstratios Patsouris; Michael B. Petersen
Greenberg skeletal dysplasia is a very rare, autosomal recessive, in utero, lethal chondrodystrophy for which only eight index cases of diverse ethnic origin have been reported so far. The defect is associated with a defect in cholesterol biosynthesis and due to mutations in the gene encoding the lamin B receptor (LBR).
American Journal of Medical Genetics Part A | 2008
Marianna Bugiani; Yolanda Gyftodimou; Paraskevi Tsimpouka; Eleonora Lamantea; Eleni Katzaki; Pio D'Adamo; Sheena Nakou; Nelli Georgoudi; Maria Grigoriadou; Efthymia Tsina; Nikolaos Kabolis; Donatella Milani; Efthimia Pandelia; Haris Kokotas; Paolo Gasparini; Aglaia Giannoulia-Karantana; Alessandra Renieri; Massimo Zeviani; Michael B. Petersen
Cohen syndrome, caused by mutations in the COH1 gene, is an autosomal recessive disorder consisting of mental retardation, microcephaly, growth delay, severe myopia, progressive chorioretinal dystrophy, facial anomalies, slender limbs with narrow hands and feet, tapered fingers, short stature, kyphosis and/or scoliosis, pectus carinatum, joint hypermobility, pes calcaneovalgus, and, variably, truncal obesity. Here, we describe the clinical and molecular findings in 14 patients from an isolated Greek island population. The clinical phenotype was fairly homogeneous, although microcephaly was not constant, and some patients had severe visual disability. All patients were homozygous for a novel intragenic COH1 deletion spanning exon 6 to exon 16, suggesting a founder effect. The discovery of this mutation has made carrier detection and prenatal diagnosis possible in this population.
Clinical Chemistry and Laboratory Medicine | 2012
Haris Kokotas; Christos Kroupis; Dimitrios Chiras; Maria Grigoriadou; Klea Lamnissou; Michael B. Petersen; George Kitsos
Abstract Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘open angle’ and ‘closed angle’ glaucoma. Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma (POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.
American Journal of Medical Genetics Part A | 2008
Haris Kokotas; Lut Van Laer; Maria Grigoriadou; Vassiliki Iliadou; John Economides; Stella Pomoni; Andreas Pampanos; Nikos Eleftheriades; Elisabeth Ferekidou; Stavros Korres; Aglaia Giannoulia-Karantana; Guy Van Camp; Michael B. Petersen
Approximately one in 1,000 children is affected by severe or profound hearing loss at birth or during early childhood (prelingual deafness). Up to 40% of congenital, autosomal recessive, severe to profound hearing impairment cases result from mutations in a single gene, GJB2, that encodes the connexin 26 protein. One specific mutation in this gene, 35delG, accounts for the majority of GJB2 mutations detected in Caucasian populations. Some previous studies have assumed that the high frequency of the 35delG mutation reflects the presence of a mutational hot spot, while other studies support the theory of a common founder. Greece is among the countries with the highest carrier frequency of the 35delG mutation (3.5%), and a recent study raised the hypothesis of the origin of this mutation in ancient Greece. We genotyped 60 Greek deafness patients homozygous for the 35delG mutation for six single nucleotide polymorphisms (SNPs) and two microsatellite markers inside or flanking the GJB2 gene. The allele distribution in the patients was compared to 60 Greek normal hearing controls. A strong linkage disequilibrium was found between the 35delG mutation and markers inside or flanking the GJB2 gene. Furthermore, we found a common haplotype with a previous study, suggesting a common founder for the 35delG mutation.
Disease Markers | 2009
Haris Kokotas; Maria Grigoriadou; Margareta Mikkelsen; Aglaia Giannoulia-Karantana; Michael B. Petersen
Chromosomal aneuploidy consists the leading cause of fetal death in our species. Around 50% of spontaneous abortions until 15 weeks of gestational age are chromosomally aneuploid, with trisomies accounting for 50% of the abnormal abortions. Trisomy 21 is the most common chromosome abnormality in liveborns and is usually the result of nondisjunction of chromosome 21 in meiosis in either oogenesis or spermatogenesis. To investigate the relationship between folate metabolism and Down syndrome (DS) in a Danish population, we analyzed the common 677C>T genetic polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene. Our cohort consisted of 181 mothers of children with DS versus 1,084 healthy controls. Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) were used to examine the MTHFR 677C>T polymorphism. No significant association between the polymorphism and the risk for DS was found. We conclude that the common MTHFR 677C>T polymorphism is not likely to be a maternal risk factor for DS in our cohort and that the difference to previous studies can probably be explained by small sample size or geographic variation in gene polymorphisms involving gene-nutritional or gene-gene or gene-nutritional-environmental factors.
Molecular Cytogenetics | 2011
Emmanouil Manolakos; Catherine Sarri; Annalisa Vetro; Konstantinos Kefalas; Eleni Leze; Christalena Sofocleus; George Kitsos; Konstantina Merou; Haris Kokotas; Anna Papadopoulou; Achilleas Attilakos; Michael B. Petersen; Sofia Kitsiou-Tzeli
BackgroundDeletions of chromosome 22q11 are present in over 90% of cases of DiGeorge or Velo-Cardio-Facial syndrome (DGS/VCFS). 15q11-q13 duplication is another recognized syndrome due to rearrangements of several genes, belonging to the category of imprinted genes. The phenotype of this syndrome varies but has been clearly associated with developmental delay and autistic spectrum disorders. Co-existence of the two syndromes has not been reported so far.ResultsHere we report a 6-year-old boy presenting growth retardation, dysmorphic features and who exhibited learning difficulties. Fluorescence in situ hybridization (FISH) analysis of the proband revealed a deletion of DiGeorge Syndrome critical region (TUPLE). Array-CGH analysis revealed an interstitial duplication of 12 Mb in size in the area 15q11.2-q13.3, combined with a 3.2 Mb deletion at region 22q11.1-q11.21. FISH analysis in the mother showed a cryptic balanced translocation between chromosome 15 and chromosome 22 (not evident by classic karyotyping).DiscusionThe clinical manifestations could be related to both syndromes and the importance of array-CGH analysis in cases of unexplained developmental delay is emphasized. The present case further demonstrates how molecular cytogenetic techniques applied in the parents were necessary for the genetic counseling of the family.