Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish C. Pal is active.

Publication


Featured researches published by Harish C. Pal.


Experimental Dermatology | 2013

Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation

Harish C. Pal; Samriti Sharma; Craig A. Elmets; Mohammad Athar; Farrukh Afaq

Non‐melanoma skin cancers (NMSCs), one of the most common neoplasms, cause serious morbidity and mortality. Therefore, identification of non‐toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3′,4′,7‐tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti‐oxidant and antiproliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fisetin (5–80 μm) resulted in a significant decrease in cell viability in a dose‐ and time‐dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G2/M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti‐apoptotic proteins (Bcl2; Bcl‐xL and Mcl‐1); (ii) increased expression of pro‐apoptotic proteins (Bax, Bak and Bad); (iii) disruption of mitochondrial potential; (iv) release of cytochrome c and Smac/DIABLO from mitochondria; (v) activation of caspases; and (vi) cleavage of Poly(ADP‐ribose) polymerase (PARP) protein. Pretreatment of A431 cells with the pan‐caspase inhibitor (Z‐VAD‐FMK) blocked fisetin‐induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs.


Photochemistry and Photobiology | 2012

Pomegranate Fruit Extract Inhibits UVB‐induced Inflammation and Proliferation by Modulating NF‐κB and MAPK Signaling Pathways in Mouse Skin

Naghma Khan; Deeba N. Syed; Harish C. Pal; Hasan Mukhtar; Farrukh Afaq

There is considerable interest in the identification of natural agents capable of affording protection to skin from the adverse effects of solar ultraviolet B (UVB) radiation. Pomegranate (Punica granatum L.) fruit possesses as strong antioxidant, anti‐inflammatory and antiproliferative properties. Recently, we have shown that oral feeding of pomegranate fruit extract (PFE) to mice afforded substantial protection from the adverse effects of single UVB radiation via modulation in early biomarkers of photocarcinogenesis. This study was designed to investigate the photochemopreventive effects of PFE (0.2%, wt/vol) after multiple UVB irradiations (180 mJ cm−2, on alternative day, for a total of seven treatments) to the skin of SKH‐1 hairless mice. Oral feeding of PFE to SKH‐1 mice inhibited UVB‐induced epidermal hyperplasia, infiltration of leukocytes, protein oxidation and lipid peroxidation. Immunoblot analysis demonstrated that oral feeding of PFE to mice inhibited UVB‐induced (1) nuclear translocation and phosphorylation of nuclear factor kappa B/p65, (2) phosphorylation and degradation of IκBα, (3) activation of IKKα/ΙΚΚβ and (4) phosphorylation of mitogen‐activated protein kinase proteins and c‐Jun. PFE consumption also inhibited UVB‐induced protein expression of (1) COX‐2 and iNOS, (2) PCNA and cyclin D1 and (3) matrix metalloproteinases‐2,‐3 and ‐9 in mouse skin. Taken together, these data show that PFE consumption afforded protection to mouse skin against the adverse effects of UVB radiation by modulating UVB‐induced signaling pathways.


PLOS ONE | 2014

Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

Harish C. Pal; Samriti Sharma; Leah Ray Strickland; Santosh K. Katiyar; Mary E. Ballestas; Mohammad Athar; Craig A. Elmets; Farrukh Afaq

Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin inhibits melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.


Oncotarget | 2015

Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells

Harish C. Pal; Ronald D. Baxter; Katherine M. Hunt; Jyoti Agarwal; Craig A. Elmets; Mohammad Athar; Farrukh Afaq

Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.


PLOS ONE | 2013

Delphinidin Reduces Cell Proliferation and Induces Apoptosis of Non-Small-Cell Lung Cancer Cells by Targeting EGFR/VEGFR2 Signaling Pathways

Harish C. Pal; Samriti Sharma; Leah Ray Strickland; Jyoti Agarwal; Mohammad Athar; Craig A. Elmets; Farrukh Afaq

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) have emerged as two effective clinical targets for non-small-cell lung cancer (NSCLC). In the present study, we found that delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, is a potent inhibitor of both EGFR and VEGFR2 in NSCLC cells that overexpress EGFR/VEGFR2. Using these cells, we next determined the effects of delphinidin on cell growth and apoptosis in vitro and on tumor growth and angiogenesis in vivo. Delphinidin (5-60 µM) treatment of NSCLC cells inhibited the activation of PI3K, and phosphorylation of AKT and MAPKs. Additionally, treatment of NSCLC cells with delphinidin resulted in inhibition of cell growth without having significant toxic effects on normal human bronchial epithelial cells. Specifically, treatment of NCI-H441 and SK-MES-1 cells with delphindin (5-60 µM) resulted in (i) cleavage of PARP protein, (ii) activation of caspase-3 and -9, (iii) downregulation of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1), (iv) upregulation of pro-apoptotic proteins (Bax and Bak), and (v) decreased expression of PCNA and cyclin D1. Furthermore, in athymic nude mice subcutaneously implanted with human NSCLC cells, delphinidin treatment caused a (i) significant inhibition of tumor growth, (ii) decrease in the expression of markers for cell proliferation (Ki67 and PCNA) and angiogenesis (CD31 and VEGF), and (iii) induction of apoptosis, when compared with control mice. Based on these observations, we suggest that delphinidin, alone or as an adjuvant to current therapies, could be used for the management of NSCLC, especially those that overexpress EGFR and VEGFR2.


Cancer Letters | 2015

Targeting drivers of melanoma with synthetic small molecules and phytochemicals.

Leah Ray Strickland; Harish C. Pal; Craig A. Elmets; Farrukh Afaq

Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway - the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib - have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies.


Photochemistry and Photobiology | 2015

Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice.

Harish C. Pal; Mohammad Athar; Craig A. Elmets; Farrukh Afaq

Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm−2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.


Oncotarget | 2016

Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma

Harish C. Pal; Ariana Diamond; Leah Ray Strickland; John C. Kappes; Santosh K. Katiyar; Craig A. Elmets; Mohammad Athar; Farrukh Afaq

Melanoma is the most aggressive and deadly form of cutaneous neoplasm due to its propensity to metastasize. Oncogenic BRAF drives sustained activation of the BRAF/MEK/ERK (MAPK) pathway and cooperates with PI3K/AKT/mTOR (PI3K) signaling to induce epithelial to mesenchymal transition (EMT), leading to cell invasion and metastasis. Therefore, targeting these pathways is a promising preventive/therapeutic strategy. We have shown that fisetin, a flavonoid, reduces human melanoma cell invasion by inhibiting EMT. In addition, fisetin inhibited melanoma cell proliferation and tumor growth by downregulating the PI3K pathway. In this investigation, we aimed to determine whether fisetin can potentiate the anti-invasive and anti-metastatic effects of sorafenib in BRAF-mutated melanoma. We found that combination treatment (fisetin + sorafenib) more effectively reduced the migration and invasion of BRAF-mutated melanoma cells both in vitro and in raft cultures compared to individual agents. Combination treatment also effectively inhibited EMT as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin both in vitro and in xenograft tumors. Furthermore, combination therapy effectively inhibited Snail1, Twist1, Slug and ZEB1 protein expression compared to monotherapy. The expression of MMP-2 and MMP-9 in xenograft tumors was further reduced in combination treatment compared to individual agents. Bioluminescent imaging of athymic mice, intravenously injected with stably transfected CMV-luciferase-ires-puromycin. T2A.EGFP-tagged A375 melanoma cells, demonstrated fewer lung metastases following combination treatment versus monotherapy. Our findings demonstrate that fisetin potentiates the anti-invasive and anti-metastatic effects of sorafenib. Our data suggest that fisetin may be a worthy adjuvant chemotherapy for the management of melanoma.


Skin Pharmacology and Physiology | 2015

Prodifferentiation, Anti-Inflammatory and Antiproliferative Effects of Delphinidin, a Dietary Anthocyanidin, in a Full-Thickness Three-Dimensional Reconstituted Human Skin Model of Psoriasis

Jean Christopher Chamcheu; Harish C. Pal; Imtiaz A. Siddiqui; Vaqar M. Adhami; Seyoum Ayehunie; Brendan T. Boylan; Felicite K. Noubissi; Naghma Khan; Deeba N. Syed; Craig A. Elmets; Gary S. Wood; Farrukh Afaq; Hasan Mukhtar

Background: Psoriasis is a chronic inflammatory disorder of skin and joints for which conventional treatments that are effective in clearing the moderate-to-severe disease are limited due to long-term safety issues. This necessitates exploring the usefulness of botanical agents for treating psoriasis. We previously showed that delphinidin, a diet-derived anthocyanidin endowed with antioxidant and anti-inflammatory properties, induces normal epidermal keratinocyte differentiation and suggested its possible usefulness for the treatment of psoriasis [1]. Objectives: To investigate the effect of delphinidin (0-20 μM; 2-5 days) on psoriatic epidermal keratinocyte differentiation, proliferation and inflammation using a three-dimensional reconstructed human psoriatic skin equivalent (PSE) model. Methods: PSEs and normal skin equivalents (NSEs) established on fibroblast-contracted collagen gels with respective psoriatic and normal keratinocytes and treated with/without delphinidin were analyzed for histology, expression of markers of differentiation, proliferation and inflammation using histomorphometry, immunoblotting, immunochemistry, qPCR and cultured supernatants for cytokine with a Multi-Analyte ELISArray Kit. Results: Our data show that treatment of PSE with delphinidin induced (1) cornification without affecting apoptosis and (2) the mRNA and protein expression of markers of differentiation (caspase-14, filaggrin, loricrin, involucrin). It also decreased the expression of markers of proliferation (Ki67 and proliferating cell nuclear antigen) and inflammation (inducible nitric oxide synthase and antimicrobial peptides S100A7-psoriasin and S100A15-koebnerisin, which are often induced in psoriatic skin). ELISArray showed increased release of psoriasis-associated keratinocyte-derived proinflammatory cytokines in supernatants of the PSE cultures, and this increase was significantly suppressed by delphinidin. Conclusions: These observations provide a rationale for developing delphinidin for the management of psoriasis.


Mini-reviews in Medicinal Chemistry | 2016

Phytochemicals for the Management of Melanoma.

Harish C. Pal; Katherine M. Hunt; Ariana Diamond; Craig A. Elmets; Farrukh Afaq

Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma.

Collaboration


Dive into the Harish C. Pal's collaboration.

Top Co-Authors

Avatar

Farrukh Afaq

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Craig A. Elmets

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Santosh K. Katiyar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ross L. Pearlman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ram Prasad

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Samriti Sharma

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Leah Ray Strickland

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mohammad Athar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hasan Mukhtar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Pooja Sharma

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge