Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish C. Phuleria is active.

Publication


Featured researches published by Harish C. Phuleria.


The Lancet | 2014

Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project

Rob Beelen; Ole Raaschou-Nielsen; Massimo Stafoggia; Zorana Jovanovic Andersen; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Paul Fischer; Mark J. Nieuwenhuijsen; Paolo Vineis; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Anna Oudin; Bertil Forsberg; Lars Modig; Aki S. Havulinna; Timo Lanki; Anu W. Turunen; Bente Oftedal; Wenche Nystad; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Göran Pershagen

BACKGROUND Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. METHODS We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. FINDINGS The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). INTERPRETATION Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. FUNDING European Communitys Seventh Framework Program (FP7/2007-2011).


European Respiratory Journal | 2015

Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

Martin Adam; Tamara Schikowski; Anne Elie Carsin; Yutong Cai; Bénédicte Jacquemin; Margaux Sanchez; Andrea Vierkötter; Alessandro Marcon; Dirk Keidel; Dorothee Sugiri; Zaina Al Kanani; Rachel Nadif; Valérie Siroux; Rebecca Hardy; Diana Kuh; Thierry Rochat; Pierre-Olivier Bridevaux; Marloes Eeftens; Ming-Yi Tsai; Simona Villani; Harish C. Phuleria; Matthias Birk; Josef Cyrys; Marta Cirach; Audrey de Nazelle; Mark J. Nieuwenhuijsen; Bertil Forsberg; Kees de Hoogh; Christophe Declerq; Roberto Bono

The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. The ESCAPE study finds that, even at very low levels, air pollution has adverse effects on lung function in adults http://ow.ly/A1ssB


Environmental Health Perspectives | 2011

Transportation noise and blood pressure in a population-based sample of adults

Julia Dratva; Harish C. Phuleria; Maria Foraster; Jean-Michel Gaspoz; Dirk Keidel; Nino Künzli; L.-J. Sally Liu; Marco Pons; Elisabeth Zemp; Margaret W. Gerbase; Christian Schindler

Background: There is some evidence for an association between traffic noise and ischemic heart disease; however, associations with blood pressure have been inconsistent, and little is known about health effects of railway noise. Objectives: We aimed to investigate the effects of railway and traffic noise exposure on blood pressure; a secondary aim was to address potentially susceptible subpopulations. Methods: We performed adjusted linear regression analyses using data from 6,450 participants of the second survey of the Swiss Study on Air Pollution and Lung Disease in Adults (SAPALDIA 2) to estimate the associations of daytime and nighttime railway and traffic noise (A-weighted decibels) with systolic blood pressure (SBP) and diastolic blood pressure (DBP; millimeters of mercury). Noise data were provided by the Federal Office for the Environment. Stratified analyses by self-reported hypertension, cardiovascular disease (CVD), and diabetes were performed. Results: Mean noise exposure during the day and night was 51 dB(A) and 39 dB(A) for traffic noise, respectively, and 19 dB(A) and 17 dB(A) for railway noise. Adjusted regression models yielded significant effect estimates for a 10 dB(A) increase in railway noise during the night [SBP β = 0.84; 95% confidence interval (CI): 0.22, 1.46; DBP β = 0.44; 95% CI: 0.06, 0.81] and day (SBP β = 0.60; 95% CI: 0.07, 1.13). Additional adjustment for nitrogen dioxide left effect estimates almost unchanged. Stronger associations were estimated for participants with chronic disease. Significant associations with traffic noise were seen only among participants with diabetes. Conclusion: We found evidence of an adverse effect of railway noise on blood pressure in this cohort population. Traffic noise was associated with higher blood pressure only in diabetics, possibly due to low exposure levels. The study results imply more severe health effects by transportation noise in vulnerable populations, such as adults with hypertension, diabetes, or CVD.


European Respiratory Journal | 2014

Association of ambient air pollution with the prevalence and incidence of COPD

Tamara Schikowski; Martin Adam; Alessandro Marcon; Yutong Cai; Andrea Vierkötter; Anne Elie Carsin; Bénédicte Jacquemin; Zaina Al Kanani; Rob Beelen; Matthias Birk; Pierre-Olivier Bridevaux; Bert Brunekeef; Peter Burney; Marta Cirach; Josef Cyrys; Kees de Hoogh; Roberto de Marco; Audrey de Nazelle; Christophe Declercq; Bertil Forsberg; Rebecca Hardy; Joachim Heinrich; Gerard Hoek; Deborah Jarvis; Dirk Keidel; Diane Kuh; Thomas A. J. Kuhlbusch; Enrica Migliore; Gioia Mosler; Mark J. Nieuwenhuijsen

The role of air pollution in chronic obstructive pulmonary disease (COPD) remains uncertain. The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NOx) and road traffic exposure were assigned to home addresses using land-use regression models. COPD was defined by NHANES reference equation (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) less than the lower limit of normal) and the Global Initiative for Chronic Obstructive Lung Disease criterion (FEV1/FVC <0.70) and categorised by severity in non-asthmatics. We included 6550 subjects with assigned NOx and 3692 with PM measures. COPD was not associated with NO2 or PM10 in any individual cohort. In meta-analyses only NO2, NOx, PM10 and the traffic indicators were positively, although not significantly, associated with COPD. The only statistically significant associations were seen in females (COPD prevalence using GOLD: OR 1.57, 95% CI 1.11–2.23; and incidence: OR 1.79, 95% CI 1.21–2.68). None of the principal results were statistically significant, the weak positive associations of exposure with COPD and the significant subgroup findings need to be evaluated in further well standardised cohorts followed up for longer time, and with time-matched exposure assignments. Results from the ESCAPE study: what is the association of COPD prevalence and incidence with ambient air pollution? http://ow.ly/rQcFM


Environmental Research | 2011

Local determinants of road traffic noise levels versus determinants of air pollution levels in a Mediterranean city.

Maria Foraster; Alexandre Deltell; Xavier Basagaña; Mercedes Medina-Ramón; Inmaculada Aguilera; Laura Bouso; María Grau; Harish C. Phuleria; Marcela Rivera; Rémy Slama; J Sunyer; Jaume Targa; Nino Künzli

BACKGROUND Both traffic-related noise and air pollution have been associated with cardiovascular disease (CVD). Spatial correlations between these environmental stressors may entail mutual confounding in epidemiological studies investigating their long-term effects. Few studies have investigated their correlation - none in Spain - and results differ among cities. OBJECTIVES We assessed the contribution of urban land-use and traffic variables to the noise-air pollution correlation in Girona town, where an investigation of the chronic effects of air pollution and noise on CVD takes place (REGICOR-AIR). METHODOLOGY Outdoor annual mean concentrations of nitrogen dioxide (NO(2)) derived from monthly passive sampler measurements were obtained at 83 residential locations. Long-term average traffic-related noise levels from a validated model were assigned to each residence. Linear regression models were fitted both for NO(2) and noise. RESULTS The correlation between NO(2) and noise (L(24h)) was 0.62. However, the correlation differed across the urban space, with lower correlations at sites with higher traffic density and in the modern downtown. Traffic density, distance from the location to the sidewalk and building density nearby explained 35.6% and 73.2% of the variability of NO(2) and noise levels, respectively. The correlation between the residuals of the two models suggested the presence of other unmeasured common variables. CONCLUSIONS The substantial correlation between traffic-related noise and NO(2), endorsed by common determinants, and the dependence of this correlation on complex local characteristics call for careful evaluations of both factors to ultimately assess their cardiovascular effects.


Environment International | 2014

Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts : Results from the ESCAPE and TRANSPHORM projects

Meng Wang; Rob Beelen; Massimo Stafoggia; Ole Raaschou-Nielsen; Zorana Jovanovic Andersen; Barbara Hoffmann; Paul Fischer; Danny Houthuijs; Mark J. Nieuwenhuijsen; Gudrun Weinmayr; Paolo Vineis; Wei W. Xun; Konstantina Dimakopoulou; Evangelia Samoli; Tiina Laatikainen; Timo Lanki; Anu W. Turunen; Bente Oftedal; Per E. Schwarze; Geir Aamodt; Johanna Penell; Ulf de Faire; Michal Korek; Karin Leander; Göran Pershagen; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Kirsten Thorup Eriksen; Mette Sørensen

BACKGROUND Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. AIMS The aim of this study was to examine the association of PM composition with cardiovascular mortality. METHODS We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts--Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. RESULTS The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). CONCLUSION In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.


Environmental Health Perspectives | 2014

Arterial Blood Pressure and Long-Term Exposure to Traffic-Related Air Pollution: An Analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Kataryna B. Fuks; Gudrun Weinmayr; Maria Foraster; Julia Dratva; Regina Hampel; Danny Houthuijs; Bente Oftedal; Anna Oudin; Sviatlana Panasevich; Johanna Penell; Johan Nilsson Sommar; Mette Sørensen; Pekka Tiittanen; Kathrin Wolf; Wei W. Xun; Immaculada Aguilera; Xavier Basagaña; Rob Beelen; Michiel L. Bots; Bert Brunekreef; H. Bas Bueno-de-Mesquita; Barbara Caracciolo; Marta Cirach; Ulf de Faire; Audrey de Nazelle; Marloes Eeftens; Roberto Elosua; Raimund Erbel; Bertil Forsberg; Laura Fratiglioni

Background: Long-term exposure to air pollution has been hypothesized to elevate arterial blood pressure (BP). The existing evidence is scarce and country specific. Objectives: We investigated the cross-sectional association of long-term traffic-related air pollution with BP and prevalent hypertension in European populations. Methods: We analyzed 15 population-based cohorts, participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). We modeled residential exposure to particulate matter and nitrogen oxides with land use regression using a uniform protocol. We assessed traffic exposure with traffic indicator variables. We analyzed systolic and diastolic BP in participants medicated and nonmedicated with BP-lowering medication (BPLM) separately, adjusting for personal and area-level risk factors and environmental noise. Prevalent hypertension was defined as ≥ 140 mmHg systolic BP, or ≥ 90 mmHg diastolic BP, or intake of BPLM. We combined cohort-specific results using random-effects meta-analysis. Results: In the main meta-analysis of 113,926 participants, traffic load on major roads within 100 m of the residence was associated with increased systolic and diastolic BP in nonmedicated participants [0.35 mmHg (95% CI: 0.02, 0.68) and 0.22 mmHg (95% CI: 0.04, 0.40) per 4,000,000 vehicles × m/day, respectively]. The estimated odds ratio (OR) for prevalent hypertension was 1.05 (95% CI: 0.99, 1.11) per 4,000,000 vehicles × m/day. Modeled air pollutants and BP were not clearly associated. Conclusions: In this first comprehensive meta-analysis of European population-based cohorts, we observed a weak positive association of high residential traffic exposure with BP in nonmedicated participants, and an elevated OR for prevalent hypertension. The relationship of modeled air pollutants with BP was inconsistent. Citation: Fuks KB, Weinmayr G, Foraster M, Dratva J, Hampel R, Houthuijs D, Oftedal B, Oudin A, Panasevich S, Penell J, Sommar JN, Sørensen M, Tittanen P, Wolf K, Xun WW, Aguilera I, Basagaña X, Beelen R, Bots ML, Brunekreef B, Bueno-de-Mesquita HB, Caracciolo B, Cirach M, de Faire U, de Nazelle A, Eeftens M, Elosua R, Erbel R, Forsberg B, Fratiglioni L, Gaspoz JM, Hilding A, Jula A, Korek M, Krämer U, Künzli N, Lanki T, Leander K, Magnusson PK, Marrugat J, Nieuwenhuijsen MJ, Östenson CG, Pedersen NL, Pershagen G, Phuleria HC, Probst-Hensch NM, Raaschou-Nielsen O, Schaffner E, Schikowski T, Schindler C, Schwarze PE, Søgaard AJ, Sugiri D, Swart WJ, Tsai MY, Turunen AW, Vineis P, Peters A, Hoffmann B. 2014. Arterial blood pressure and long-term exposure to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environ Health Perspect 122:896–905; http://dx.doi.org/10.1289/ehp.1307725


Aerosol Science and Technology | 2007

Application of a Diffusion Charger for the Measurement of Particle Surface Concentration in Different Environments

Leonidas Ntziachristos; Andrea Polidori; Harish C. Phuleria; Michael D. Geller; Constantinos Sioutas

Particle surface area has recently been considered as a possible metric in an attempt to correlate particle characteristics with health effects. In order to provide input to such studies, two Nanoparticle Surface Area Monitors (NSAMs, TSI, Inc.) were deployed in different urban sites within Los Angeles to measure the concentration levels and the diurnal profiles of the surface area of ambient particles. The NSAMs principle of operation is based on the unipolar diffusion charging of particles. Results show that the particle surface concentration decreases from ∼150 μ m2 cm−3 next to a freeway to ∼ 100 μ m2 cm−3 at 100 m downwind of the freeway, and levels decline to 50–70 μ m2 cm−3 at urban background sites. Up to 51% and 30% of the total surface area corresponded to particles < 40 nm next to the freeway and at an urban background site, respectively. The NSAM signal was well correlated with a reconstructed surface concentration based on the particle number size distribution measured with collocated Scanning Mobility Particle Sizers (SMPSs, TSI, Inc.). In addition, the mean surface diameter calculated by combination of the NSAM and the total particle number concentration measured by a Condensation Particle Counter (CPC, TSI, Inc.) was in reasonable agreement with the arithmetic mean SMPS diameter, especially at the urban site. This study corroborates earlier findings on the application of diffusion chargers for ambient particle monitoring by demonstrating that they can be effectively used to monitor the particle surface concentration, or combined with a CPC to derive the mean surface diameter with high temporal resolution.


Environmental Health Perspectives | 2013

Improved air quality and attenuated lung function decline : modification by obesity in the SAPALDIA cohort

Tamara Schikowski; Emmanuel Schaffner; Flurina Meier; Harish C. Phuleria; Andrea Vierkötter; Christian Schindler; Susi Kriemler; Elisabeth Zemp; Ursula Krämer; Pierre-Olivier Bridevaux; Thierry Rochat; Joel Schwartz; Nino Künzli; Nicole Probst-Hensch

Background: Air pollution and obesity are hypothesized to contribute to accelerated decline in lung function with age through their inflammatory properties. Objective: We investigated whether the previously reported association between improved air quality and lung health in the population-based SAPALDIA cohort is modified by obesity. Methods: We used adjusted mixed-model analyses to estimate the association of average body mass index (BMI) and changes in particulate matter with aerodynamic diameter ≤ 10 µm (PM10; ΔPM10) with lung function decline over a 10-year follow-up period. Results: Lung function data and complete information were available for 4,664 participants. Age-related declines in lung function among participants with high average BMI were more rapid for FVC (forced vital capacity), but slower for FEV1/FVC (forced expiratory volume in 1 sec/FVC) and FEF25–75 (forced expiratory flow at 25–75%) than declines among those with low or normal average BMI. Improved air quality was associated with attenuated reductions in FEV1/FVC, FEF25–75, and FEF25–75/FVC over time among low- and normal-BMI participants, but not overweight or obese participants. The attenuation was most pronounced for ΔFEF25–75/FVC (30% and 22% attenuation in association with a 10-μg/m3 decrease in PM10 among low- and normal-weight participants, respectively.) Conclusion: Our results point to the importance of considering health effects of air pollution exposure and obesity in parallel. Further research must address the mechanisms underlying the observed interaction. Citation: Schikowski T, Schaffner E, Meier F, Phuleria HC, Vierkötter A, Schindler C, Kriemler S, Zemp E, Krämer U, Bridevaux P-O, Rochat T, Schwartz J, Künzli N, Probst-Hensch N. 2013. Improved air quality and attenuated lung function decline: modification by obesity in the SAPALDIA cohort. Environ Health Perspect 121:1034–1039; http://dx.doi.org/10.1289/ehp.1206145


Environment International | 2015

Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts

Regina Hampel; Annette Peters; Rob Beelen; Bert Brunekreef; Josef Cyrys; Ulf de Faire; Kees de Hoogh; Kateryna Fuks; Barbara Hoffmann; Anke Hüls; Medea Imboden; Aleksandra Jedynska; Ingeborg M. Kooter; Wolfgang Koenig; Nino Künzli; Karin Leander; Patrik K. E. Magnusson; Satu Männistö; Johanna Penell; Göran Pershagen; Harish C. Phuleria; Nicole Probst-Hensch; Noreen Pundt; Emmanuel Schaffner; Tamara Schikowski; Dorothea Sugiri; Pekka Tiittanen; Ming-Yi Tsai; Meng Wang; Kathrin Wolf

BACKGROUND Epidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses. OBJECTIVES To investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects. METHODS In total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter <10μm (PM10) and <2.5μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass. RESULTS A 5ng/m(3) increase in PM2.5 copper and a 500ng/m(3) increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10ng/m(3) increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5. CONCLUSIONS Long-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.

Collaboration


Dive into the Harish C. Phuleria's collaboration.

Top Co-Authors

Avatar

Nino Künzli

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Christian Schindler

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Probst-Hensch

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Constantinos Sioutas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Martina S. Ragettli

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Ming-Yi Tsai

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marloes Eeftens

Swiss Tropical and Public Health Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge