Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish Vashisth is active.

Publication


Featured researches published by Harish Vashisth.


ACS Chemical Biology | 2013

Conformational Dynamics of a Regulator of G-Protein Signaling Protein Reveals a Mechanism of Allosteric Inhibition by a Small Molecule

Harish Vashisth; Andrew J. Storaska; Richard R. Neubig; Charles L. Brooks

Regulators of G protein signaling (RGS) proteins are key players in regulating signaling via G protein-coupled receptors. RGS proteins directly bind to the Gα-subunits of activated heterotrimeric G-proteins, and accelerate the rate of GTP hydrolysis, thereby rapidly deactivating G-proteins. Using atomistic simulations and NMR spectroscopy, we have studied in molecular detail the mechanism of action of CCG-50014, a potent small molecule inhibitor of RGS4 that covalently binds to cysteine residues on RGS4. We apply temperature-accelerated molecular dynamics (TAMD) to carry out enhanced conformational sampling of apo RGS4 structures, and consistently find that the α5-α6 helix pair of RGS4 can spontaneously span open-like conformations, allowing binding of CCG-50014 to the buried side-chain of Cys95. Both NMR experiments and MD simulations reveal chemical shift perturbations in residues in the vicinity of inhibitor binding site as well as in the RGS4-Gα binding interface. Consistent with a loss of G-protein binding, GAP activity, and allosteric mechanism of action of CCG-50014, our simulations of the RGS4-Gα complex in the presence of inhibitor suggest a relatively unstable protein-protein interaction. These results have potential implications for understanding how the conformational dynamics among RGS proteins may play a key role in the sensitivity of inhibitors.


Membranes | 2015

Theoretical and computational studies of peptides and receptors of the insulin family.

Harish Vashisth

Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.


Current Topics in Medicinal Chemistry | 2017

Kinetics of Ligand Binding Through Advanced Computational Approaches: A Review

Alex Dickson; Pratyush Tiwary; Harish Vashisth

Ligand residence times and binding rates have been found to be useful quantities to consider during drug design. The underlying structural and dynamic determinants of these kinetic quantities are difficult to discern. Driven by developments in computational hardware and simulation methodologies, molecular dynamics (MD) studies on full binding and unbinding pathways have emerged recently, showing these structural and dynamic determinants in atomic detail. However, the long timescales related to drug binding and release are still prohibitive to conventional MD simulation. Here we discuss a suite of enhanced sampling methods that have been applied to the study of full ligand binding or unbinding pathways, and reveal the kinetics of drug binding and/or release. We divide these sampling methods into three families (trajectory parallelization, metadynamics, and temperature- based methods), and discuss recent applications of each, as well as their basic theoretical underpinnings including how kinetic information is extracted. We then present an outlook for how the field could evolve, and how the rich variety of sampling methods discussed here can be leveraged in the future for computationally driven drug design.


Membranes | 2014

Flexibility in the Insulin Receptor Ectodomain Enables Docking of Insulin in Crystallographic Conformation Observed in a Hormone-Bound Microreceptor

Harish Vashisth

Insulin binding to the insulin receptor (IR) is the first key step in initiating downstream signaling cascades for glucose homeostasis in higher organisms. The molecular details of insulin recognition by IR are not yet completely understood, but a picture of hormone/receptor interactions at one of the epitopes (Site 1) is beginning to emerge from recent structural evidence. However, insulin-bound structures of truncated IR suggest that crystallographic conformation of insulin cannot be accommodated in the full IR ectodomain due to steric overlap of insulin with the first two type III fibronectin domains (F1 and F2), which are contributed to the insulin binding-pocket by the second subunit in the IR homodimer. A conformational change in the F1-F2 pair has thus been suggested. In this work, we present an all-atom structural model of complex of insulin and the IR ectodomain, where no structural overlap of insulin with the receptor domains (F1 and F2) is observed. This structural model was arrived at by flexibly fitting parts of our earlier insulin/IR all-atom model into the simulated density maps of crystallized constructs combined with conformational sampling from apo-IR solution conformations. Importantly, our experimentally-consistent model helps rationalize yet unresolved Site 2 contacts of hormone with IR, and suggests ligand cross-linking of receptor subunits.


Journal of the American Chemical Society | 2018

Differential Protein Dynamics of Regulators of G-protein Signaling: Role in Specificity of Small-molecule Inhibitors

Vincent Shaw; Hossein Mohammadiarani; Harish Vashisth; Richard R. Neubig

Small-molecule inhibitor selectivity may be influenced by variation in dynamics among members of a protein family. Regulator of G-protein Signaling (RGS) proteins are a family that plays a key role in G-Protein Coupled Receptor (GPCR) signaling by binding to active Gα subunits and accelerating GTP hydrolysis, thereby terminating activity. Thiadiazolidinones (TDZDs) inhibit the RGS-Gα interaction by covalent modification of cysteine residues in RGS proteins. Some differences in specificity may be explained by differences in the complement of cysteines among RGS proteins. However, key cysteines shared by RGS proteins inhibited by TDZDs are not exposed on the protein surface, and differences in potency exist among RGS proteins containing only buried cysteines. We hypothesize that differential exposure of buried cysteine residues among RGS proteins partially drives TDZD selectivity. Hydrogen-deuterium exchange (HDX) studies and molecular dynamics (MD) simulations were used to probe the dynamics of RGS4, RGS8, and RGS19, three RGS proteins inhibited at a range of potencies by TDZDs. When these proteins were mutated to contain a single, shared cysteine, RGS19 was found to be most potently inhibited. HDX studies revealed differences in α4 and α6 helix flexibility among RGS isoforms, with particularly high flexibility in RGS19. This could cause differences in cysteine exposure and lead to differences in potency of TDZD inhibition. MD simulations of RGS proteins revealed motions that correspond to solvent exposure observed in HDX, providing further evidence for a role of protein dynamics in TDZD selectivity.


Frontiers in Endocrinology | 2016

All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

Hossein Mohammadiarani; Harish Vashisth

The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.


Journal of Computational Chemistry | 2017

Insulin mimetic peptide S371 folds into a helical structure.

Hossein Mohammadiarani; Harish Vashisth

Insulin plays a crucial physiological role in glucose control by initiating a number of signaling events on binding and activating its cell surface receptor. Insulin mimics have, therefore, become promising agents for treating diabetes and to probe the mechanism of interaction of insulin with its receptor. Specifically, many insulin‐mimetic peptide sequences have been discovered and found to selectively function as agonists and antagonists, but their structures and the mechanistic details of their interactions with the receptor remain challenging to characterize. In this work, we have studied the folding properties and structure of a Site 1 insulin mimetic peptide S371 that has sequence similarities with the insulin B‐chain as well as with a critical hormone‐binding element of the receptor known as the C‐terminal (CT) peptide. We first validated our simulation approaches by predicting the known solution structure of the insulin B‐chain helix and then applied them to study the folding of the mimetic peptide S371. Our data predict a helical fold for the first 16 residues of S371 that has a resemblance to the helical motifs in the insulin B‐chain and CT. We also propose receptor‐bound models of S371 that provide mechanistic explanations for competing binding properties of S371 and CT to the Site 1 of IR.


Nature Communications | 2018

Publisher Correction: Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes

Yue xiao Shen; Woochul Song; D. Ryan Barden; Tingwei Ren; Chao Lang; Hasin Feroz; Codey B. Henderson; Patrick O. Saboe; Daniel Tsai; Hengjing Yan; Peter J. Butler; Guillermo C. Bazan; William A. Phillip; Robert J. Hickey; Paul S. Cremer; Harish Vashisth; Manish Kumar

The original version of this Article contained an error in the spelling of the author Woochul Song, which was incorrectly given as Woochul C. Song. This has been corrected in both the PDF and HTML versions of the Article.


Journal of Physical Chemistry B | 2018

Interpreting Hydrogen–Deuterium Exchange Events in Proteins Using Atomistic Simulations: Case Studies on Regulators of G-Protein Signaling Proteins

Hossein Mohammadiarani; Vincent Shaw; Richard R. Neubig; Harish Vashisth

Hydrogen-deuterium exchange (HDX) experiments are widely used in studies of protein dynamics. To predict the propensity of amide hydrogens for exchange with deuterium, several models have been reported in which computations of amide-hydrogen protection factors are carried out using molecular dynamics (MD) simulations. Given significant variation in the criteria used in different models, the robustness and broader applicability of these models to other proteins, especially homologous proteins showing distinct amide-exchange patterns, remains unknown. The sensitivity of the predictions when MD simulations are conducted with different force-fields is yet to tested and quantified. Using MD simulations and experimental HDX data on three homologous signaling proteins, we report detailed studies quantifying the performance of seven previously reported models (M1-M7) of two general types: empirical and fractional-population models. We find that the empirical models show inconsistent predictions but predictions of the fractional population models are robust. Contrary to previously reported work, we find that the solvent-accessible surface area of amide hydrogens is a useful metric when combined with a new metric defining the distances of amide hydrogens from the first polar atoms in proteins. On the basis of this, we report two new models, one empirical (M8) and one population-based (M9). We find strong protection of amide hydrogens from solvent exchange both within the stable helical motifs and also in the interhelical loops. We further observe that the exchange-competent states of amide hydrogens occur on the sub 100 ps time-scale via localized fluctuations, and such states among amides of a given protein do not appear to show any cooperativity or allosteric coupling.


Journal of Physical Chemistry B | 2017

Pathways and Thermodynamics of Oxygen Diffusion in [FeFe]-Hydrogenase

Mohammadjavad Mohammadi; Harish Vashisth

The H2 production potential of [FeFe]-hydrogenase, a hydrogen-producing enzyme from green algae, is reported to be promising for economical and large-scale production of H2 as an alternative source of renewable energy. The production of hydrogen takes place at the catalytic center buried in the enzyme core. Unfortunately, binding of O2 to the catalytic center of the enzyme irreversibly inactivates it, essentially blocking hydrogen production. Therefore, a better understanding of the mechanism of O2 entry/exit is necessary to develop strategies for designing oxygen-tolerant enzymes. In this work, we investigated the pathways and diffusion channels of O2 gas in this hydrogenase. Through exhaustive mapping of oxygen-diffusion channels, we computed a full thermodynamic map of preferred binding locations of O2 gas within the enzyme interior, which showed that O2 can enter and exit the enzyme through multiple pathways along which are key residues that are known to perturb rates of O2 binding. The global minimum in the free-energy landscape is located near the H-cluster, a key metallic center within the enzyme. Along O2 diffusion channels, we further identified several residues that could be potential candidates for mutations to increase the oxygen tolerance of [FeFe]-hydrogenase.

Collaboration


Dive into the Harish Vashisth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manish Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robert J. Hickey

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Woochul Song

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Marc Baaden

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Viatcheslav Freger

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksandr Noy

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chun-Long Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hasin Feroz

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge