Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish Viswanathan is active.

Publication


Featured researches published by Harish Viswanathan.


IEEE Communications Magazine | 2004

Relay-based deployment concepts for wireless and mobile broadband radio

Ralf Pabst; Bernhard Walke; Daniel C. Schultz; Patrick Herhold; Halim Yanikomeroglu; Sayandev Mukherjee; Harish Viswanathan; Matthias Lott; Wolfgang Zirwas; Mischa Dohler; Hamid Aghvami; David D. Falconer; Gerhard P. Fettweis

In recent years, there has been an upsurge of interest in multihop-augmented infrastructure-based networks in both the industry and academia, such as the seed concept in 3GPP, mesh networks in IEEE 802.16, and converge extension of HiperLAN/2 through relays or user-cooperative diversity mesh networks. This article, a synopsis of numerous contributions to the working group 4 of the wireless world research forum and other research work, presents an overview of important topics and applications in the context of relaying. It covers different approaches to exploiting the benefits of multihop communications via relays, such as solutions for radio range extension in mobile and wireless broadband cellular networks (trading range for capacity), and solutions to combat shadowing at high radio frequencies. Furthermore, relaying is presented as a means to reduce infrastructure deployment costs. It is also shown that through the exploitation of spatial diversity, multihop relaying can enhance capacity in cellular networks. We wish to emphasize that while this article focuses on fixed relays, many of the concepts presented can also be applied to systems with moving relays.


IEEE Journal on Selected Areas in Communications | 2003

Downlink capacity evaluation of cellular networks with known-interference cancellation

Harish Viswanathan; Sivarama Venkatesan; Howard C. Huang

Recently, the capacity region of a multiple-input multiple-output (MIMO) Gaussian broadcast channel, with Gaussian codebooks and known-interference cancellation through dirty paper coding, was shown to equal the union of the capacity regions of a collection of MIMO multiple-access channels. We use this duality result to evaluate the system capacity achievable in a cellular wireless network with multiple antennas at the base station and multiple antennas at each terminal. Some fundamental properties of the rate region are exhibited and algorithms for determining the optimal weighted rate sum and the optimal covariance matrices for achieving a given rate vector on the boundary of the rate region are presented. These algorithms are then used in a simulation study to determine potential capacity enhancements to a cellular system through known-interference cancellation. We study both the circuit data scenario in which each user requires a constant data rate in every frame and the packet data scenario in which users can be assigned a variable rate in each frame so as to maximize the long-term average throughput. In the case of circuit data, the outage probability as a function of the number of active users served at a given rate is determined through simulations. For the packet data case, long-term average throughputs that can be achieved using the proportionally fair scheduling algorithm are determined. We generalize the zero-forcing beamforming technique to the multiple receive antennas case and use this as the baseline for the packet data throughput evaluation.


international conference on computer communications | 2003

Dynamic load balancing through coordinated scheduling in packet data systems

Suman Das; Harish Viswanathan; Gee Rittenhouse

Third generation code-division multiple access (CDMA) systems propose to provide packet data service through a high speed shared channel with intelligent and fast scheduling at the base-stations. In the current approach base-stations schedule independently of other base-stations. We consider scheduling schemes in which scheduling decisions are made jointly for a cluster of cells thereby enhancing performance through interference avoidance and dynamic load balancing. We consider algorithms that assume complete knowledge of the channel quality information from each of the base-stations to the terminals at the centralized scheduler as well as a two-tier scheduling strategy that assumes only the knowledge of the long term channel conditions at the centralized scheduler. We demonstrate that in the case of asymmetric traffic distribution, where load imbalance is most pronounced, significant throughput gains can be obtained while the gains in the symmetric case are modest. Since the load balancing is achieved through centralized scheduling, our scheme can adapt to time-varying traffic patterns dynamically.


IEEE Transactions on Wireless Communications | 2005

Performance of cellular networks with relays and centralized scheduling

Harish Viswanathan; Sayandev Mukherjee

Future cellular wireless networks could include multihop transmission through relays. We propose a centralized downlink scheduling scheme in a cellular network with a small number of relays. The scheduling scheme has the property that it guarantees stability of the user queues for the largest set of arrival rates. We obtain throughput results by simulation for various scenarios and study the effect of number of relays, relay transmit power relative to the base station (BS) power, and the effect of distributing a given total power between the BS and different numbers of relays. We also present results for the case without channel fading to determine what fraction of the throughput gain is achieved from diversity reception. We find that, with four relays deployed in each sector, it is possible to achieve significant throughput gain including the signaling overhead.


IEEE Transactions on Information Theory | 2009

Dynamic Algorithms for Multicast With Intra-Session Network Coding

Tracey Ho; Harish Viswanathan

The problem of multiple multicast sessions with intra-session network coding in time-varying networks is considered. The network-layer capacity region of input rates that can be stably supported is established. Dynamic algorithms for multicast routing, network coding, power allocation, session scheduling, and rate allocation across correlated sources, which achieve stability for rates within the capacity region, are presented. This work builds on the back-pressure approach introduced by Tassiulas , extending it to network coding and correlated sources. In the proposed algorithms, decisions on routing, network coding, and scheduling between different sessions at a node are made locally at each node based on virtual queues for different sinks. For correlated sources, the sinks locally determine and control transmission rates across the sources. The proposed approach yields a completely distributed algorithm for wired networks. In the wireless case, power control among different transmitters is centralized while routing, network coding, and scheduling between different sessions at a given node are distributed.


IEEE Journal on Selected Areas in Communications | 2006

Throughput-range tradeoff of wireless mesh backhaul networks

Harish Viswanathan; Sayandev Mukherjee

Wireless backhaul communication is expected to play a significant role in providing the necessary backhaul resources for future high-rate wireless networks. Mesh networking, in which information is routed from source to destination over multiple wireless links, has potential advantages over traditional single-hop networking, especially for backhaul communication. We develop a linear programming framework for determining optimum routing and scheduling of flows that maximizes throughput in a wireless mesh network and accounts for the effect of interference and variable-rate transmission. We then apply this framework to examine the throughput and range capabilities for providing wireless backhaul to a hexagonal grid of base stations, for both single-hop and multihop transmissions for various network scenarios. We then discuss the application of mesh networking for load balancing of wired backhaul traffic under unequal access traffic conditions. Numerical results show a significant benefit for mesh networking under unbalanced loading.


IEEE Transactions on Wireless Communications | 2002

Multiple antennas in cellular CDMA systems: transmission, detection, and spectral efficiency

Howard C. Huang; Harish Viswanathan; Gerard J. Foschini

Providing wireless high-speed packet data services for Web browsing and streaming multimedia applications will be a key feature in future code-division multiple-access (CDMA) systems. We study down-link CDMA schemes for providing such services using multiple antennas at the transmitter and receiver. We propose a generalization of the point-to-point narrowband Bell Labs layered space-time (BLAST) system to a wideband multiple access system which simultaneously supports multiple users through code spreading. We discuss transmission options for achieving transmit diversity and spatial separation and introduce a generalization of the vertical BLAST detector for CDMA signals. Using link level simulations, we determine the bit-error rates versus signal-to-interference ratio of the various transmitter options. We then describe a novel technique for determining the system spectral efficiency (measured in bits per second per Hertz per cell sector) by incorporating the link level results with system level outage simulations. Using four antennas at the transmitter and eight antennas at each receiver, the system can support multiple receivers at 16 times the voice rate, resulting in a system spectral efficiency an order magnitude higher than a conventional single-antenna voice system.


IEEE Transactions on Wireless Communications | 2005

Optimizing the ARQ performance in downlink packet data systems with scheduling

Haitao Zheng; Harish Viswanathan

Third generation wireless systems typically employ adaptive coding and modulation, scheduling, and Hybrid Automatic Repeat reQuest (HARQ) techniques to provide high-speed packet data service on the downlink. Two main considerations in designing such a system are algorithms for the selection of coding and modulation schemes based on the channel quality of the link and algorithms for the selection of the user to whom a particular slot is assigned. We propose a systematic approach to optimize the mapping between signal-to-interference-and-noise ratio (SINR) and modulation and coding scheme (MCS) to maximize the throughput by taking into account the type of HARQ scheme employed. We also propose to incorporate frame error rate (FER) and retransmission information as a part of the scheduling decision. The proposed scheduler ranking methods based on using an effective rate rather than the instantaneous rate provide natural priority to retransmissions over new transmissions, and priority to users with better channel quality. Extensive simulation results comparing performance of the proposed methods to conventional methods are presented.


IEEE Transactions on Communications | 2005

Rate scheduling in multiple antenna downlink wireless systems

Harish Viswanathan; Krishnan Kumaran

We consider scheduling strategies for multiantenna and multibeam cellular wireless systems for high-speed packet data services on the downlink. We establish a fundamental connection between the stability region of the queuing system and the set of feasible transmission rates, which provides the basis for the scheduling algorithm proposed in this paper. Transmission using adaptive steerable beams and fixed sector beams are considered and average delay versus throughput results are obtained through simulations for the proposed scheduling scheme in each case. While in single antenna systems multiuser diversity gains are achieved by the scheduling algorithms that transmit to a single user in each scheduling interval, our results show that with multiple antennas, transmitting to a carefully chosen subset of users has superior performance. The multiantenna scheduling problem is closely related to the problem of coordinated scheduling for transmission through multiple base stations, where a user can receive signals from several base stations simultaneously. We consider the special case when three single-antenna base stations are allowed to cooperate and transmit to the users in the triangular region between the base stations and propose scheduling strategies that demonstrate significant gains.


IEEE Transactions on Communications | 2014

Fundamentals of Throughput Maximization with Random Arrivals for M2M Communications

Harpreet S. Dhillon; Howard C. Huang; Harish Viswanathan; Reinaldo A. Valenzuela

For wireless systems in which randomly arriving devices attempt to transmit a fixed payload to a central receiver, we develop a framework to characterize the system throughput as a function of arrival rate and per-device data rate. The framework considers both coordinated transmission (where devices are scheduled) and uncoordinated transmission (where devices communicate on a random access channel and a provision is made for retransmissions). Our main contribution is a novel characterization of the optimal throughput for the case of uncoordinated transmission and a strategy for achieving this throughput that relies on overlapping transmissions and joint decoding. Simulations for a noise-limited cellular network show that the optimal strategy provides a factor of four improvement in throughput compared with slotted ALOHA. We apply our framework to evaluate more general system-level designs that account for overhead signaling. We demonstrate that, for small payload sizes relevant for machine-to-machine (M2M) communications (200 bits or less), a one-stage strategy, where identity and data are transmitted optimally over the random access channel, can support at least twice the number of devices compared with a conventional strategy, where identity is established over an initial random-access stage and data transmission is scheduled.

Collaboration


Dive into the Harish Viswanathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitao Zheng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Rupp

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge