Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harjeet Khanna is active.

Publication


Featured researches published by Harjeet Khanna.


Molecular Breeding | 2004

Centrifugation Assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) Embryogenic Cell Suspensions of Banana (Musa spp. Cavendish AAA and Lady finger AAB)

Harjeet Khanna; Douglas K. Becker; Jennifer Kleidon; James L. Dale

Centrifugation-assisted Agrobacterium-mediated transformation (CAAT) protocol, developed using banana cultivars from two economically important genomic groups (AAA and AAB) of cultivated Musa, is described. This protocol resulted in 25-65 plants/50mg of settled cell volume of embryogenic suspension cells, depending upon the Agrobacterium strain used, and gave rise to hundreds of morphologically normal, transgenic plants in two banana cultivars from the two genomic groups. Development of a highly efficient Agrobacterium-mediated transformation protocol for a recalcitrant species like banana, especially the Cavendish group (AAA) cultivars, required the identification and optimisation of the factors affecting T-DNA delivery and subsequent plant regeneration. We used male-flower-derived embryogenic cell suspensions of two banana cultivars (Cavendish and Lady Finger) and Agrobacterium strains AGL1 and LBA4404, harbouring binary vectors carrying hpt (hygromycin phosphotransferase) and gusA (β-glucuronidase) or nptII (neomycin phosphotransferase) and a modified gfp (green fluorescent protein) gene in the T-DNA, to investigate and optimise T-DNA delivery and tissue culture variables. Factors evaluated included pre-induction of Agrobacterium, conditions and media used for inoculation and co-cultivation, and the presence of acetosyringone and Pluronic F68 in the co-cultivation media. One factor that led to a significant enhancement in transformation frequency was the introduction of a centrifugation step during co-cultivation. Post co-cultivation liquid-media wash and recovery step helped avoid Agrobacterium overgrowth on filters supporting suspension culture cells. Marker-gene expression and molecular analysis demonstrated that transgenes integrated stably into the banana genome. T-DNA:banana DNA boundary sequences were amplified and sequenced in order to study the integration profile.


Transgenic Research | 2002

Elite Indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas).

Harjeet Khanna; Satish K. Raina

Bt-transgenics of elite indica rice breeding lines (IR-64, Pusa Basmati-1 and Karnal Local) were generated through biolistic of Agrobacterium-mediated approaches. A synthetic cry1Ac gene, codon optimised for rice and driven by the maize ubiquitin-1 promoter, was used. Over 200 putative transformants of IR-64 and Pusa Basmati-1 and 26 of the Karnal Local were regenerated following use of the hpt (hygromycin phosphotransferase) selection system. Initial transformation frequency was in the range of 1 to 2% for particle bombardment while it was comparatively higher (∼ 9%) for Agrobacterium. An improved selection procedure, involving longer selection on the antibiotic-supplemented medium, enhanced the frequency of Bt-transformants and reduced the number of escapes. Molecular evaluation revealed multiple transgene insertions in transformants, whether generated through biolistic or Agrobacterium. In the latter case, it was also observed that all genes on the T-DNA do not necessarily get transferred as an intact insert. Selected Bt-lines of IR-64 and Pusa Basmati-1, having Bt-titers of 0.1% (of total soluble protein) and above were evaluated for resistance against manual infestation of freshly hatched neonate larvae of yellow stem borers collected from a hot spot stem borer infested area in northern India. Several Bt-lines were identified showing 100% mortality of larvae, within 4-days of infestation, in cut-stem as well as vegetative stage whole plant assays. However, there was an occasional white head even among such plants when assayed at the reproductive stage. Results are discussed in the light of resistance management strategies for deployment of Bt-rice.


Plant Cell Reports | 1995

Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization

P. B. Kirti; T. Mohapatra; Harjeet Khanna; Shyam Prakash; V. L. Chopra

SummaryIntergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.


Plant Cell Reports | 2006

Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures.

Harjeet Khanna; Grant Daggard

Antifreeze proteins (AFPs) adsorb to ice crystals and inhibit their growth, leading to non-colligative freezing point depression. Crops like spring wheat, that are highly susceptible to frost damage, can potentially be made frost tolerant by expressing AFPs in the cytoplasm and apoplast where ice recrystallisation leads to cellular damage. The protein sequence for HPLC-6 α-helical antifreeze protein from winter flounder was rationally redesigned after removing the prosequences in the native protein. Wheat nuclear gene preferred amino acid codons were used to synthesize a recombinant antifreeze gene, rAFPI. Antifreeze protein was targeted to the apoplast using a Murine leader peptide sequence from the mAb24 light chain or retained in the endoplasmic reticulum using C-terminus KDEL sequence. The coding sequences were placed downstream of the rice Actin promoter and Actin-1 intron and upstream of the nopaline synthase terminator in the plant expression vectors. Transgenic wheat lines were generated through micro projectile bombardment of immature embryos of spring wheat cultivar Seri 82. Levels of antifreeze protein in the transgenic lines without any targeting peptide were low (0.06–0.07%). The apoplast-targeted protein reached a level of 1.61% of total soluble protein, 90% of which was present in the apoplast. ER-retained protein accumulated in the cells at levels up to 0.65% of total soluble proteins. Transgenic wheat line T-8 with apoplast-targeted antifreeze protein exhibited the highest levels of antifreeze activity and provided significant freezing protection even at temperatures as low as −7°C.


Centre for Tropical Crops and Biocommodities; Science & Engineering Faculty | 1998

Genotype x culture media interaction effects on regeneration response of three indica rice cultivars

Harjeet Khanna; Satish K. Raina

Interactive effects of genotypes with callus induction and regeneration media combinations on green plantlet regeneration response were studied for three indica rice (Oryza sativa L.) cultivars, IR-72, IR-54 and Karnal Local. Isolated mature-embryos were used to derive scutellar callus and fifteen media combinations involving MS, N6, R2, SK1 and some modifications were tested. Regeneration percentage as well as the shoot-bud induction frequency were influenced by genotype, callus induction medium, regeneration medium, interaction between genotype and the two media (callus induction and regeneration) as well the interaction between the callus induction medium and regeneration medium. Basal media combination of SK1m (callusing) and MS (regeneration) was found to be the best for cv. Karnal Local in which regeneration frequency of 88% and shoot-bud induction of 233% was observed. In IR-72, the highest regeneration frequency of 47.5% and shoot-bud induction frequency of 77% was obtained on MS-MS combination. In IR-54, highest regeneration frequency (25%) was recorded on MMS(N)-MMS(N) combination, whereas, highest frequency of shoot-bud induction (50%) was observed on MMS(S)-MS combination. Although genotype and the composition of the callus induction basal medium were the major determinants of regeneration response, an overall analysis of variation also revealed a significant interaction between the media used for de-differentiation (callusing) and re-differentiation (plantlet regeneration).


Functional Plant Biology | 2014

Physiological basis of salt stress tolerance in rice expressing the antiapoptotic gene SfIAP

Thi My Linh Hoang; Brett Williams; Harjeet Khanna; James L. Dale; Sagadevan G. Mundree

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membranes integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.


Journal of Plant Biochemistry and Biotechnology | 1997

Enhanced In Vitro Plantlet Regeneration from Mature Embryo-derived Primary Callus of a Basmati Rice Cultivar Through Modification of Nitrate-nitrogen and Ammonium-nitrogen Concentrations

Harjeet Khanna; Satish K. Raina

Mature-embryo derived primary calli of the basmati rice (Oryza sativa L.) cv Karnal Local showed significant enhancement in in vitro green-plantlet regeneration efficiency through modification of nitrogen content of the callusing medium. Using KNO3 as the source of nitrate nitrogen and (NH4)2SO4 as the source of ammonium nitrogen, forty-five media combinations involving 9 levels of KNO3 (0–40 mM) and 5 concentrations (0–6.5 mM) of (NH4)2SO4 were examined. The highest frequency of plantlet regeneration (100%) and a maximum number of green-plantlets (∼ 7) per embryo-derived primary callus was obtained in calli derived from the medium having 35 mM KNO3 and 5 mM (NH4)2SO4. Higher concentrations of KNO3 and/or (NH4)2SO4 showed a decline in the regeneration efficiency. It was also observed that although the nitrogen content of the callus induction medium had a profound effect on the regenerability of the callus, the nitrogen composition of the regeneration medium also affected it significantly.


Journal of Plant Biochemistry and Biotechnology | 1997

Biolistic Transformation of Elite Indica Rice (Oryza sativa L.) Cultivars Through Semi-Solid and Liquid Medium Selection Systems

Harjeet Khanna; Satish K. Raina; Srinivasulu; K. Kumar

Following microprojectile mediated delivery of a plasmid construct (pAHC-25) encoding bar (bialophos resistance) gene into five-day-old scutellar calli derived from mature embryos, the effectiveness of selection procedure for bar-gene expressing tissue was compared for two indica rice cultivars (IR-64 and Karnal Local). While IR-64 transformants could be selected through the generally used semi-solid selection medium, the same procedure was not effective in the basmati cultivar Karnal Local. In the latter case, while lower concentrations (2–4 mg 1−1) of the selective agent phosphinothricin (PPT) yielded only escapes, higher concentrations (6–8 mg l−1) inhibited proliferation of transformed as well as untransformed sectors. For Karnal Local, a liquid medium based selection system was successfully utilized for recovering transformed sectors and, eventually, regenerants. The study demonstrates the generation of transformants of two elite indica cultivars using the environment-independent system of mature embryos from seeds.


Journal of Nutrition | 2012

Cooking Enhances but the Degree of Ripeness Does Not Affect Provitamin A Carotenoid Bioavailability from Bananas in Mongolian Gerbils

Kara A. Bresnahan; Sara Arscott; Harjeet Khanna; Geofrey Arinaitwe; James L. Dale; Wilberforce Tushemereirwe; Stephanie Mondloch; Jacob Tanumihardjo; Fabiana F. De Moura; Sherry A. Tanumihardjo

Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.


Nature Communications | 2017

Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4

James L. Dale; Anthony James; Jean Yves Paul; Harjeet Khanna; Mark Smith; Santy Peraza-Echeverria; Fernando Garcia-Bastidas; Gert H. J. Kema; Peter M. Waterhouse; Kerrie Mengersen; Robert M. Harding

Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.The newly recognized Fusarium wilt pathogen tropical race 4 is threatening worldwide banana production. Here, the authors transform Cavendish bananas with a resistance gene, RGA2, from diploid banana or a nematode-derived gene, Ced9, and confer resistance to natural infection under field conditions.

Collaboration


Dive into the Harjeet Khanna's collaboration.

Top Co-Authors

Avatar

James L. Dale

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert M. Harding

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas K. Becker

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Satish K. Raina

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Grant Daggard

University of Southern Queensland

View shared research outputs
Top Co-Authors

Avatar

Bulukani Mlalazi

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Yves Paul

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fabiana F. De Moura

International Food Policy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anthony James

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge