Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harlan N. Bradford is active.

Publication


Featured researches published by Harlan N. Bradford.


Journal of Clinical Investigation | 1986

High molecular weight kininogen is an inhibitor of platelet calpain.

Alvin H. Schmaier; Harlan N. Bradford; Lee D. Silver; A Farber; C F Scott; D Schutsky; Robert W. Colman

Recent studies from our laboratory indicate that a high concentration of platelet-derived calcium-activated cysteine protease (calpain) can cleave high molecular weight kininogen (HMWK). On immunodiffusion and immunoblot, antiserum directed to the heavy chain of HMWK showed immunochemical identity with alpha-cysteine protease inhibitor--a major plasma inhibitor of tissue calpains. Studies were then initiated to determine whether purified or plasma HMWK was also an inhibitor of platelet calpain. Purified alpha-cysteine protease inhibitor, alpha-2-macroglobulin, as well as purified heavy chain of HMWK or HMWK itself inhibited purified platelet calpain. Kinetic analysis revealed that HMWK inhibited platelet calpain noncompetitively (Ki approximately equal to 5 nM). Incubation of platelet calpain with HMWK, alpha-2-macroglobulin, purified heavy chain of HMWK, or purified alpha-cysteine protease inhibitor under similar conditions resulted in an IC50 of 36, 500, 700, and 1,700 nM, respectively. The contribution of these proteins in plasma towards the inhibition of platelet calpain was investigated next. Normal plasma contained a protein that conferred a five to sixfold greater IC50 of purified platelet calpain than plasma deficient in either HMWK or total kininogen. Reconstitution of total kininogen deficient plasma with purified HMWK to normal levels (0.67 microM) completely corrected the subnormal inhibitory activity. However, reconstitution of HMWK deficient plasma to normal levels of low molecular weight kininogen (2.4 microM) did not fully correct the subnormal calpain inhibitory capacity of this plasma. These studies indicate that HMWK is a potent inhibitor as well as a substrate of platelet calpain and that the plasma and cellular kininogens may function as regulators of cytosolic, calcium-activated cysteine proteases.


Journal of Biological Chemistry | 2000

Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation.

Harlan N. Bradford; Robin A. Pixley; Robert W. Colman

Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibα (glycocalicin) without activation, we now report that factor XIIa (0.37 μm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibα. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

High-Molecular-Weight Kininogen Fragments Stimulate the Secretion of Cytokines and Chemokines Through uPAR, Mac-1, and gC1qR in Monocytes

Mohammad M. Khan; Harlan N. Bradford; Irma Isordia-Salas; Yuchuan Liu; Yi Wu; Ricardo G. Espinola; Berhane Ghebrehiwet; Robert W. Colman

Objective—Plasma high-molecular-weight kininogen (HK) is cleaved in inflammatory diseases by kallikrein to HKa with release of bradykinin (BK). We postulated a direct link between HKa and cytokine/chemokine release. Methods and Results—HKa, but not BK, releases cytokines tumor necrosis factor (TNF)-&agr;, interleukin (IL)-1&bgr;, IL-6, and chemokines IL-8 and MCP-1 from isolated human mononuclear cells. At a concentration of 600 nM, glutathione-S-transferase (GST) fusion proteins of kininogen domain 3 (D3), a fragment of domain 3, E7P (aaG255-Q292), HK domain 5 (D5), the D5 recombinant peptides HG (aa K420-D474) and HGK (aa H475-S626) stimulated secretion of IL-1&bgr; from mononuclear cells. Monoclonal antibodies (MAbs) specific for D5 or specific for D3 blocked release of IL-1&bgr; by HKa, supporting the importance of both domains. Antibodies to HK receptors on leukocytes including Mac-1, LFA-1, uPAR, and C1qR inhibited IL-1&bgr; secretion induced by tKa 98%, 89%, 85%, and 62%, respectively. Fractionation of mononuclear cells identified the responsible cell, a blood monocyte. Inhibitors of signaling pathways NFkB, JNK, and p38 but not extracellular signal-regulated kinase (ERK) decreased cytokine release from mononuclear cells. HKa increased the synthesis of IL-1&bgr; as deduced by an increase of IL-1&bgr; mRNA at 1 to 2 hours. Conclusions—HKa domains 3 and 5 may contribute to the pathogenesis of inflammatory diseases by releasing IL-1&bgr; from human monocytes using intracellular signaling pathways initiated by uPAR, &bgr;2 integrins and gC1qR.


Journal of Clinical Investigation | 1984

Kinetics of the Factor XIa catalyzed activation of human blood coagulation Factor IX.

Peter N. Walsh; Harlan N. Bradford; D Sinha; J R Piperno; G P Tuszynski

The kinetics of activation of human Factor IX by human Factor XIa was studied by measuring the release of a trichloroacetic acid-soluble tritium-labeled activation peptide from Factor IX by a modification of a method described for bovine Factor IX activation by Zur and Nemerson (Zur, M., and Y. Nemerson, 1980, J. Biol. Chem., 255:5703-5707). Initial rates of trichloroacetic acid-soluble 3H-release were linear over 10-30 min of incubation of Factor IX (88 nM) with CaCl2 (5 mM) and with pure (greater than 98%) Factor XIa (0.06-1.3 nM), which was prepared by incubating human Factor XI with bovine Factor XIIa. Release of 3H preceded the appearance of Factor IXa activity, and the percentage of 3H released remained constant when the mole fraction of 3H-labeled and unlabeled Factor IX was varied and the total Factor IX concentration remained constant. A linear correlation (r greater than 0.98, P less than 0.001) was observed between initial rates of 3H-release and the concentration of Factor XIa, measured by chromogenic assay and by radioimmunoassay and added at a Factor IX:Factor XIa molar ratio of 70-5,600. Kinetic parameters, determined by Lineweaver-Burk analysis, include Km (0.49 microM) of about five- to sixfold higher than the plasma Factor IX concentration, which could therefore regulate the reaction. The catalytic constant (kcat) (7.7/s) is approximately 20-50 times higher than that reported by Zur and Nemerson (Zur, M., and Y. Nemerson, 1980, J. Biol. Chem., 255:5703-5707) for Factor IX activation by Factor VIIa plus tissue factor. Therefore, depending on the relative amounts of Factor XIa and Factor VIIa generated in vivo and other factors which may influence reaction rates, these kinetic parameters provide part of the information required for assessing the relative contributions of the intrinsic and extrinsic pathways to Factor IX activation, and suggest that the Factor XIa catalyzed reaction is physiologically significant.


Chemico-Biological Interactions | 1995

Inhibition of the conversion of pre-interleukins-1α and 1β to mature cytokines by p-benzoquinone, a metabolite of benzene

Harlan N. Bradford; Robert W. Colman; George F. Kalf

Chronic exposure of humans to benzene causes severe bone marrow cell depression leading to aplastic anemia. Marrow stromal macrophage dysfunction and deficient interleukin-1 production has been reported for patients with severe aplastic anemia. The stromal macrophage, a target of benzene toxicity, is involved in hematopoietic regulation through the synthesis of several cytokines including interleukin-1, which is required for production by stromal fibroblasts of a number of cytokines required for the survival of hematopoietic progenitor cells. We have previously demonstrated that hydroquinone, a major toxic metabolite of benzene in marrow, prevents the proteolytic conversion of 31 kDa pre-interleukin-1 alpha to the 17 kDa cytokine by calpain in purified murine stromal macrophages. Furthermore, stromal macrophages from benzene-treated mice produce the 31 kDa pre-interleukin-1 alpha when stimulated in culture with endotoxin, but cannot convert the precursor to interleukin-1 alpha. In this report, we show that 1,4-benzoquinone, the oxidation product of hydroquinone in the cell, causes a concentration-dependent inhibition of highly purified human platelet calpain with an IC50 of 3 microM. Hydroquinone also inhibits the processing of pre-interleukin-1 beta by interleukin-1 beta convertase. The addition of 2 microM hydroquinone to B1 cells that undergo autocrine stimulation by interleukin-1 beta resulted in the cessation of autocrine cell growth and interleukin-1 beta secretion into the culture medium, as determined by Western immunoblots of the culture supernatants. Purified converting enzyme treated with 3 microM benzoquinone was incapable of converting 31 kDa recombinant pre-interleukin-1 beta to the 17 kDa mature cytokine as analyzed by polyacrylamide gel electrophoresis and Western immunoblotting. These findings support our observations in a mouse model that benzene-induced bone marrow cell depression results from a lack of interleukin-1 alpha subsequent to an inhibition by benzoquinone of calpain, the protease required for converting pre-interleukin-1 alpha to active cytokine. The results may provide a basis for studying benzene-induced aplastic anemia in a mouse model.


Biochemical and Biophysical Research Communications | 1989

Conformation of high molecular weight kininogen: Effects of kallikrein and factor XIa cleavage*

German B. Villanueva; Lester Leung; Harlan N. Bradford; Robert W. Colman

The effect of kallikrein and factor XIa proteolysis of high molecular weight kininogen (HK) was investigated. Circular dichroism (CD) spectroscopy showed that cleavage of HK by plasma kallikrein or urinary kallikrein, both of which result in an active cofactor (HKa), results in conformational change that is characterized by increase in CD ellipticity at 222 nm. This suggests an increase in organized secondary structures. By contrast, cleavage of HK by factor XIa which results in an inactive cofactor (HKi) is characterized by a dramatic decrease in CD ellipticity at 222 nm suggesting an entirely different type of conformational change. The intrinsic fluorescence of HK is enhanced after cleavage by all three proteases. These conformational changes may play a role in determining the structure and function of HKa and HKi.


Thrombosis and Haemostasis | 2005

Domain 5 of cleaved high molecular weight kininogen inhibits endothelial cell migration through Akt

Vaibhav Katkade; Abigail A. Soyombo; Irma Isordia-Salas; Harlan N. Bradford; John P. Gaughan; Robert W. Colman; Tracee S. Panetti

Domain 5 (D5) of cleaved high molecular weight kininogen (HKa) inhibits angiogenesis in vivo and endothelial cell migration in vitro, but the cell signaling pathways involved in HKa and D5 inhibition of endothelial cell migration are incompletely delineated. This study examines the mechanism of HKa and D5 inhibition of two potent stimulators of endothelial cell migration, sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF), that act through the P13-kinase-Akt signaling pathway. HKa and D5 inhibit bovine pulmonary artery endothelial cell (BPAE) or human umbilical vein endothelial cell chemotaxis in the modified-Boyden chamber in response toVEGF or S1P. The inhibition of migration by HKa is reversed by antibodies to urokinase-type plasminogen activator receptor. Both HKa and D5 decrease the speed of BPAE cell migration and alter the morphology in live, time-lapse microscopy after stimulation with S1P or VEGF. HKa and D5 reduce the localization of paxillin to the focal adhesions after S1P and VEGF stimulation. To better understand the intracellular signaling pathways, we examined the effect of HKa on the phosphorylation of Akt and its downstream effector, GSK-3alpha HKa and D5 inhibit phosphorylation of Akt and GSK-3alpha after stimulation withVEGF and S1P. Inhibitors of Akt and P13-kinase, the upstream activator of Akt, block endothelial cell migration and disrupt paxillin localization to the focal adhesions after stimulation with VEGF and S1P. Therefore we suggest that HKa through its D5 domain alters P13-kinase-Akt signaling to inhibit endothelial cell migration through alterations in the focal adhesions.


Journal of Biological Chemistry | 2013

Membrane Binding by Prothrombin Mediates Its Constrained Presentation to Prothrombinase for Cleavage

Harlan N. Bradford; Steven J. Orcutt; Sriram Krishnaswamy

Background: Prothrombin variants lacking membrane binding have probed the contribution of the substrate-membrane interaction in thrombin formation by prothrombinase. Results: Loss of membrane binding yields modest changes in rate but affects the pathway for substrate cleavage. Conclusion: Membrane binding by the substrate constrains the presentation of prothrombin for cleavage by prothrombinase. Significance: New insights into how the action of prothrombinase on prothrombin is regulated. Long-standing dogma proposes a profound contribution of membrane binding by prothrombin in determining the rate at which it is converted to thrombin by prothrombinase. We have examined the action of prothrombinase on full-length prothrombin variants lacking γ-carboxyglutamate modifications (desGla) with impaired membrane binding. We show an unexpectedly modest decrease in the rate of thrombin formation for desGla prothrombin but with a major effect on the pathway for substrate cleavage. Using desGla prothrombin variants in which the individual cleavage sites have been singly rendered uncleavable, we find that loss of membrane binding and other Gla-dependent functions in the substrate leads to a decrease in the rate of cleavage at Arg320 and a surprising increase in the rate of cleavage at Arg271. These compensating effects arise from a loss in the membrane component of exosite-dependent tethering of substrate to prothrombinase and a relaxation in the constrained presentation of the individual cleavage sites for active site docking and catalysis. Loss of constraint is evident as a switch in the pathway for prothrombin cleavage and the intermediate produced but without the expected profound decrease in rate. Extension of these findings to the action of prothrombinase assembled on platelets and endothelial cells on fully carboxylated prothrombin reveals new mechanistic insights into function on physiological membranes. Cell-dependent enzyme function is probably governed by a differential ability to support prothrombin binding and the variable accumulation of intermediates from the two possible pathways of prothrombin activation.


Journal of Biological Chemistry | 2010

Regulated Cleavage of Prothrombin by Prothrombinase: REPOSITIONING A CLEAVAGE SITE REVEALS THE UNIQUE KINETIC BEHAVIOR OF THE ACTION OF PROTHROMBINASE ON ITS COMPOUND SUBSTRATE*♦

Harlan N. Bradford; Joseph A. Micucci; Sriram Krishnaswamy

Prothrombinase converts prothrombin to thrombin via cleavage at Arg320 followed by cleavage at Arg271. Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg320 and initial cleavage at this site. Precise positioning of the Arg320 site for cleavage is implied by essentially normal cleavage at Arg320 in recombinant prothrombin variants bearing additional Arg side chains either one or two residues away. However, mutation of Arg320 to Gln reveals that prothrombinase can cleave prothrombin following Arg side chains shifted by as many as two residues N-terminal to the 320 position at near normal rates. Further repositioning leads to a loss in cleavage at this region with an abrupt shift toward slow cleavage at Arg271. In contrast, the binding constant for the active site docking step is strongly dependent on the sequence preceding the scissile bond as well as position. Large effects on binding only yield minor changes in rate until the binding constant passes a threshold value. This behavior is expected for a substrate that can engage the enzyme through mutually exclusive active site docking reactions followed by cleavage to yield different products. Cleavage site specificity as well as the ordered action of prothrombinase on its compound substrate is regulated by the thermodynamics of active site engagement of the individual sites as well as competition between alternate cleavage sites for active site docking.


Journal of Biological Chemistry | 2012

Meizothrombin is an Unexpectedly Zymogen-Like Variant of Thrombin

Harlan N. Bradford; Sriram Krishnaswamy

Background: Meizothrombin is a proteinase produced as an intermediate during thrombin formation catalyzed by prothrombinase. Results: Rapid kinetic studies reveal its slow equilibration between forms with differing function. Conclusion: Meizothrombin exists in a slow and reversible equilibrium between equally populated zymogen- and proteinase-like states. Significance: We provide novel insights into its enigmatic properties and its role as an intermediate in prothrombin activation. Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na+, thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.

Collaboration


Dive into the Harlan N. Bradford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sriram Krishnaswamy

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter N. Walsh

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge