Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harland M. Patch is active.

Publication


Featured researches published by Harland M. Patch.


Current opinion in insect science | 2015

Bee nutrition and floral resource restoration

Anthony D. Vaudo; John F. Tooker; Christina M. Grozinger; Harland M. Patch

Bee-population declines are linked to nutritional shortages caused by land-use intensification, which reduces diversity and abundance of host-plant species. Bees require nectar and pollen floral resources that provide necessary carbohydrates, proteins, lipids, and micronutrients for survival, reproduction, and resilience to stress. However, nectar and pollen nutritional quality varies widely among host-plant species, which in turn influences how bees forage to obtain their nutritionally appropriate diets. Unfortunately, we know little about the nutritional requirements of different bee species. Research must be conducted on bee species nutritional needs and host-plant species resource quality to develop diverse and nutritionally balanced plant communities. Restoring appropriate suites of plant species to landscapes can support diverse bee species populations and their associated pollination ecosystem services.


PLOS ONE | 2014

Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East Africa

Elliud Muli; Harland M. Patch; Maryann Frazier; James L. Frazier; Baldwyn Torto; Tracey Baumgarten; Joseph Kilonzo; James Ng’ang’a Kimani; Fiona Mumoki; Daniel K. Masiga; James H. Tumlinson; Christina M. Grozinger

In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences

Anthony D. Vaudo; Harland M. Patch; David A. Mortensen; John F. Tooker; Christina M. Grozinger

Significance Bees pollinate the majority of flowering plant species, including agricultural crops. The pollen they obtain is their main protein and lipid source that fuels development and reproduction. Bee populations are declining globally, in large part because of landscape-level loss of host-plant species contributing to a nutritional shortage. To mitigate declines, we must understand how the nutritional requirements of bees influence foraging behavior. We demonstrate that bumble bees selectively collect pollen from host-plant species based on the protein:lipid ratios of pollen. Our research indicates that bees evaluate pollen quality and adjust foraging decisions to meet their nutritional needs. To be effective, conservation initiatives must include host-plant species that provide pollen that satisfies the nutritional demands of bees to support their populations. To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen. By successively reducing environmental and floral cues, we analyzed pollen-foraging preferences of Bombus impatiens in (i) host-plant species, (ii) pollen isolated from these host-plant species, and (iii) nutritionally modified single-source pollen diets encompassing a range of protein and lipid concentrations. In our semifield experiments, B. impatiens foragers exponentially increased their foraging rates of pollen from plant species with high protein:lipid (P:L) ratios; the most preferred plant species had the highest ratio (∼4.6:1). These preferences were confirmed in cage studies where, in pairwise comparisons in the absence of other floral cues, B. impatiens workers still preferred pollen with higher P:L ratios. Finally, when presented with nutritionally modified pollen, workers were most attracted to pollen with P:L ratios of 5:1 and 10:1, but increasing the protein or lipid concentration (while leaving ratios intact) reduced attraction. Thus, macronutritional ratios appear to be a primary factor driving bee pollen-foraging behavior and may explain observed patterns of host-plant visitation across the landscape. The nutritional quality of pollen resources should be taken into consideration when designing conservation habitats supporting bee populations.


Arthropod-plant Interactions | 2014

Bumble bees exhibit daily behavioral patterns in pollen foraging

Anthony D. Vaudo; Harland M. Patch; David A. Mortensen; Christina M. Grozinger; John F. Tooker

In response to global declines in bee populations, several studies have focused on floral resource provisioning schemes to support bee communities and maintain their pollination services. Optimizing host-plant selection for supplemental floral provisioning requires an understanding of bee foraging behavior and preferences for host-plant species. However, fully characterizing these preferences is challenging due to multiple factors influencing foraging, including the large degree of spatiotemporal variability in floral resources. To understand bee pollen foraging patterns, we developed a highly controlled mechanistic framework to measure pollen foraging preferences of the bumble bee Bombus impatiens to nine plant species native to Pennsylvania. We recorded continuous observations of foraging behavior of the experimental bee community and individual bees, while simultaneously standardizing for the number of foragers in the environment and differences in floral display of each plant species, while controlling for flowering phenology such that bees only foraged when all plant species’ flowers were open. Our results demonstrate that B. impatiens exhibit predictable daily patterns in their pollen foraging choices, and their preferences are dominated by the host-plants they visit first. We hypothesize that these patterns at the community and individual levels are driven by the interplay between pollen abundance and quality. We recommend that daily cycles of host-plant visitation be considered in future studies to ensure precise and accurate interpretations of host-plant preference. Such precision is critical for comprehensive analyses of the proximate and ultimate mechanisms driving bee foraging behavior and the selection of host-plant species to use in habitat restoration protocols.


BMC Evolutionary Biology | 2012

Plasmodium vivax populations revisited: mitochondrial genomes of temperate strains in Asia suggest ancient population expansion

Miao Miao; Zhaoqing Yang; Harland M. Patch; Yaming Huang; Ananias A. Escalante; Liwang Cui

BackgroundPlasmodium vivax is the most widely distributed human malaria parasite outside of Africa, and its range extends well into the temperate zones. Previous studies provided evidence for vivax population differentiation, but temperate vivax parasites were not well represented in these analyses. Here we address this deficit by using complete mitochondrial (mt) genome sequences to elucidate the broad genetic diversity and population structure of P. vivax from temperate regions in East and Southeast Asia.ResultsFrom the complete mtDNA sequences of 99 clinical samples collected in China, Myanmar and Korea, a total of 30 different haplotypes were identified from 26 polymorphic sites. Significant differentiation between different East and Southeast Asian parasite populations was observed except for the comparison between populations from Korea and southern China. Haplotype patterns and structure diversity analysis showed coexistence of two different groups in East Asia, which were genetically related to the Southeast Asian population and Myanmar population, respectively. The demographic history of P. vivax, examined using neutrality tests and mismatch distribution analyses, revealed population expansion events across the entire P. vivax range and the Myanmar population. Bayesian skyline analysis further supported the occurrence of ancient P. vivax population expansion.ConclusionsThis study provided further resolution of the population structure and evolution of P. vivax, especially in temperate/warm-temperate endemic areas of Asia. The results revealed divergence of the P. vivax populations in temperate regions of China and Korea from other populations. Multiple analyses confirmed ancient population expansion of this parasite. The extensive genetic diversity of the P. vivax populations is consistent with phenotypic plasticity of the parasites, which has implications for malaria control.


The Journal of Experimental Biology | 2016

Bumble bees regulate their intake of essential protein and lipid pollen macronutrients

Anthony D. Vaudo; Daniel Stabler; Harland M. Patch; John F. Tooker; Christina M. Grozinger; Geraldine A. Wright

ABSTRACT Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens. These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. Summary: Bumble bees regulate their dietary intake of proteins and lipids among synthetic diets to nutritional targets ideal for survival. These intake targets may drive pollen collection behavior in the field.


BMC Genomics | 2015

Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools

Zachary L. Fuller; Elina L. Niño; Harland M. Patch; Oscar C. Bedoya-Reina; Tracey Baumgarten; Elliud Muli; Fiona Mumoki; Aakrosh Ratan; John J. McGraw; Maryann Frazier; Daniel K. Masiga; Stephen C. Schuster; Christina M. Grozinger; Webb Miller

BackgroundWith the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including FST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions.ResultsWe performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea.ConclusionsThese results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee) that can be applied to any model system with genomic information.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2015

Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera)

Gabriel Villar; Thomas C. Baker; Harland M. Patch; Christina M. Grozinger

In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.


Scientific Reports | 2018

Investigating the Viral Ecology of Global Bee Communities with High-Throughput Metagenomics

David A. Galbraith; Zachary L. Fuller; Allyson M. Ray; Axel Brockmann; Maryann Frazier; Mary W. Gikungu; J. Francisco Iturralde Martinez; Karen M. Kapheim; Jeffrey T. Kerby; Sarah D. Kocher; Oleksiy Losyev; Elliud Muli; Harland M. Patch; Cristina Rosa; Joyce M. Sakamoto; Scott Stanley; Anthony D. Vaudo; Christina M. Grozinger

Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (−)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.


Ecology and Evolution | 2018

Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats

Anthony D. Vaudo; Liam M. Farrell; Harland M. Patch; Christina M. Grozinger; John F. Tooker

Abstract Foraging behavior is a critical adaptation by insects to obtain appropriate nutrients from the environment for development and fitness. Bumble bees (Bombus spp.) form annual colonies which must rapidly increase their worker populations to support rearing reproductive individuals before the end of the season. Therefore, colony growth and reproduction should be dependent on the quality and quantity of pollen resources in the surrounding landscape. Our previous research found that B. impatiens foraging preferences to different plant species were shaped by pollen protein:lipid nutritional ratios (P:L), with foragers preferring pollen species with a ~5:1 P:L ratio. In this study, we placed B. impatiens colonies in three different habitats (forest, forest edge, and valley) to determine whether pollen nutritional quality collected by the colonies differed between areas that may differ in resource abundance and diversity. We found that habitat did not influence the collected pollen nutritional quality, with colonies in all three habitats collecting pollen averaging a 4:1 P:L ratio. Furthermore, there was no difference in the nutritional quality of the pollen collected by colonies that successfully reared reproductives and those that did not. We found however, that “nutritional intake,” calculated as the colony‐level intake rate of nutrient quantities (protein, lipid, and sugar), was strongly related to colony growth and reproductive output. Therefore, we conclude that B. impatiens colony performance is a function of the abundance of nutritionally appropriate floral resources in the surrounding landscape. Because we did not comprehensively evaluate the nutrition provided by the plant communities in each habitat, it remains to be determined how B. impatiens polylectic foraging strategies helps them select among the available pollen nutritional landscape in a variety of plant communities to obtain a balance of key macronutrients.

Collaboration


Dive into the Harland M. Patch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony D. Vaudo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John F. Tooker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Maryann Frazier

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Elliud Muli

South Eastern Kenya University

View shared research outputs
Top Co-Authors

Avatar

David A. Mortensen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Tracey Baumgarten

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Zachary L. Fuller

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Daniel K. Masiga

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Fiona Mumoki

International Centre of Insect Physiology and Ecology

View shared research outputs
Researchain Logo
Decentralizing Knowledge