Harm M. Bartholomeus
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harm M. Bartholomeus.
Methods in Ecology and Evolution | 2017
Jose Gonzalez de Tanago; Alvaro Lau; Harm M. Bartholomeus; Martin Herold; Valerio Avitabile; Pasi Raumonen; Christopher Martius; Rosa C. Goodman; Mathias Disney; Solichin Manuri; Andrew Burt; Kim Calders
1. Tropical forest biomass is a crucial component of global carbon emission estimations. However, calibration and validation of such estimates require accurate and effective methods to estimate in situ above-ground biomass (AGB). Present methods rely on allometric models that are highly uncertain for large tropical trees. Terrestrial laser scanning (TLS) tree modelling has demonstrated to be more accurate than these models to infer forest AGB. Nevertheless, applying TLS methods on tropical large trees is still challenging. We propose a method to estimate AGB of large tropical trees by three-dimensional (3D) tree modelling of TLS point clouds. n2. Twenty-nine plots were scanned with a TLS in three study sites (Peru, Indonesia and Guyana). We identified the largest tree per plot (mean diameter at breast height of 73.5cm), extracted its point cloud and calculated its volume by 3D modelling its structure using quantitative structure models (QSM) and converted to AGB using species-specific wood density. We also estimated AGB using pantropical and local allometric models. To assess the accuracy of our and allometric methods, we harvest the trees and took destructive measurements. n3. AGB estimates by the TLS-QSM method showed the best agreement in comparison to destructive harvest measurements (28.37% coefficient of variation of root mean square error [CV-RMSE] and concordance correlation coefficient [CCC] of 0.95), outperforming the pantropical allometric models tested (35.6%-54.95% CV-RMSE and CCC of 0.89-0.73). TLS-QSM showed also the lowest bias (overall underestimation of 3.7%) and stability across tree size range, contrasting with the allometric models that showed a systematic bias (overall underestimation ranging 15.2%-35.7%) increasing linearly with tree size. The TLS-QSM method also provided accurate tree wood volume estimates (CV RMSE of 23.7%) with no systematic bias regardless the tree structural characteristics. n4. Our TLS-QSM method accounts for individual tree biophysical structure more effectively than allometric models, providing more accurate and less biased AGB estimates for large tropical trees, independently of their morphology. This non-destructive method can be further used for testing and calibrating new allometric models, reducing the current under-representation of large trees in and enhancing present and past estimates of forest biomass and carbon emissions from tropical forests.
Sensors | 2017
Benjamin Brede; Alvaro Lau; Harm M. Bartholomeus; L. Kooistra
In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX®-1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Models (DTMs), Digital Surface Models (DSMs) and finally Canopy Height Models (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 cm higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 cm. We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB).
International Journal of Applied Earth Observation and Geoinformation | 2018
Peter P. J. Roosjen; Benjamin Brede; Juha Suomalainen; Harm M. Bartholomeus; L. Kooistra; J.G.P.W. Clevers
Abstract In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30xa0×xa030xa0m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65xa0m2/m2 for the estimation of LAI, and from 17.35 to 17.29xa0μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as were captured by the UAV platform (view zenith angles up to 30°), already a huge improvement could be obtained when compared to solely using spectra simulated at nadir position. The results of this study show that the estimation of LAI and LCC by numerical inversion of the PROSAIL model can be improved when multi-angular observations are introduced. However, for the potato crop, PROSAIL inversion for measured data only showed moderate accuracy and slight improvements.
Sensors | 2017
Marston Héracles Domingues Franceschini; Harm M. Bartholomeus; Dirk van Apeldoorn; Juha Suomalainen; L. Kooistra
Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2), leaf area index (RMSE = 0.67 m2·m−2), canopy chlorophyll (RMSE = 0.24 g·m−2) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and their integration, have great potential for monitoring this specific organic cropping system.
Remote Sensing | 2017
Peter P. J. Roosjen; Juha Suomalainen; Harm M. Bartholomeus; L. Kooistra; Jan G. P. W. Clevers
Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI) and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV) model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.
International Journal of Applied Earth Observation and Geoinformation | 2016
Saeid Hamzeh; Abd Ali Naseri; Seyed Kazem Alavipanah; Harm M. Bartholomeus; Martin Herold
This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7–3.4 dS/m), moderate salinity (3.5–5.9 dS/m) and high salinity (6–9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1–5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option for monitoring agricultural fields and for this purpose Landsat data are most suitable.
Interface Focus | 2018
Yadvinder Malhi; Tobias Jackson; Lisa Patrick Bentley; Alvaro Lau; Alexander Shenkin; Martin Herold; Kim Calders; Harm M. Bartholomeus; Mathias Disney
Terrestrial laser scanning (TLS) opens up the possibility of describing the three-dimensional structures of trees in natural environments with unprecedented detail and accuracy. It is already being extensively applied to describe how ecosystem biomass and structure vary between sites, but can also facilitate major advances in developing and testing mechanistic theories of tree form and forest structure, thereby enabling us to understand why trees and forests have the biomass and three-dimensional structure they do. Here we focus on the ecological challenges and benefits of understanding tree form, and highlight some advances related to capturing and describing tree shape that are becoming possible with the advent of TLS. We present examples of ongoing work that applies, or could potentially apply, new TLS measurements to better understand the constraints on optimization of tree form. Theories of resource distribution networks, such as metabolic scaling theory, can be tested and further refined. TLS can also provide new approaches to the scaling of woody surface area and crown area, and thereby better quantify the metabolism of trees. Finally, we demonstrate how we can develop a more mechanistic understanding of the effects of avoidance of wind risk on tree form and maximum size. Over the next few years, TLS promises to deliver both major empirical and conceptual advances in the quantitative understanding of trees and tree-dominated ecosystems, leading to advances in understanding the ecology of why trees and ecosystems look and grow the way they do.
Trees-structure and Function | 2018
Alvaro Lau; Lisa Patrick Bentley; Christopher Martius; Alexander Shenkin; Harm M. Bartholomeus; Pasi Raumonen; Yadvinder Malhi; Tobias Jackson; Martin Herold
Key message A method using terrestrial laser scanning and 3D quantitative structure models opens up new possibilities to reconstruct tree architecture from tropical rainforest trees.AbstractTree architecture is the three-dimensional arrangement of above ground parts of a tree. Ecologists hypothesize that the topology of tree branches represents optimized adaptations to tree’s environment. Thus, an accurate description of tree architecture leads to a better understanding of how form is driven by function. Terrestrial laser scanning (TLS) has demonstrated its potential to characterize woody tree structure. However, most current TLS methods do not describe tree architecture. Here, we examined nine trees from a Guyanese tropical rainforest to evaluate the utility of TLS for measuring tree architecture. First, we scanned the trees and extracted individual tree point clouds. TreeQSM was used to reconstruct woody structure through 3D quantitative structure models (QSMs). From these QSMs, we calculated: (1) length and diameter of branches > 10 cm diameter, (2) branching order and (3) tree volume. To validate our method, we destructively harvested the trees and manually measured all branches over 10 cm (279). TreeQSM found and reconstructed 95% of the branches thicker than 30 cm. Comparing field and QSM data, QSM overestimated branch lengths thicker than 50 cm by 1% and underestimated diameter of branches between 20 and 60 cm by 8%. TreeQSM assigned the correct branching order in 99% of all cases and reconstructed 87% of branch lengths and 97% of tree volume. Although these results are based on nine trees, they validate a method that is an important step forward towards using tree architectural traits based on TLS and open up new possibilities to use QSMs for tree architecture.
Earth-Science Reviews | 2016
R. A. Viscarra Rossel; Thorsten Behrens; Eyal Ben-Dor; David J. Brown; José Alexandre Melo Demattê; Keith D. Shepherd; Zhou Shi; Bo Stenberg; Antoine Stevens; Viacheslav I. Adamchuk; H. Aïchi; B.G. Barthès; Harm M. Bartholomeus; Anita D. Bayer; M. Bernoux; K. Böttcher; L. Brodský; Changwen Du; Adrian Chappell; Y. Fouad; Valérie Genot; C. Gomez; S. Grunwald; A. Gubler; C. Guerrero; C.B. Hedley; Maria Knadel; H.J.M. Morrás; Marco Nocita; Leonardo Ramirez-Lopez
Remote Sensing of Environment | 2017
Phil Wilkes; Alvaro Lau; Mathias Disney; Kim Calders; Andrew Burt; Jose Gonzalez de Tanago; Harm M. Bartholomeus; Benjamin Brede; Martin Herold