Harold D. MacGillavry
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harold D. MacGillavry.
The Journal of Neuroscience | 2008
Felipe A. Court; William T. Hendriks; Harold D. MacGillavry; Jaime Alvarez; Jan van Minnen
Schwann cells play pivotal roles in the development and maintenance of the peripheral nervous system. Here, we show that intact sciatic nerve axons of mice contain a small population of ribosomes, which increases by several orders of magnitude when axons are desomatized (severed from their cell bodies). We furthermore demonstrate, using the Wallerian degeneration slow mouse as a model, that Schwann cells transfer polyribosomes to desomatized axons. These data indicate that Schwann cells have the propensity to control axonal protein synthesis by supplying ribosomes on local basis.
European Journal of Neuroscience | 2007
Floor J. Stam; Harold D. MacGillavry; Nicola J. Armstrong; Mathisca de Gunst; Yi Zhang; Ronald E. van Kesteren; August B. Smit; Joost Verhaagen
Successful regeneration of injured neurons requires a complex molecular response that involves the expression, modification and transport of a large number of proteins. The identity of neuronal proteins responsible for the initiation of regenerative neurite outgrowth is largely unknown. Dorsal root ganglion (DRG) neurons display robust and successful regeneration following lesion of their peripheral neurite, whereas outgrowth of central neurites is weak and does not lead to functional recovery. We have utilized this differential response to gain insight in the early transcriptional events associated with successful regeneration. Surprisingly, our study shows that peripheral and central nerve crushes elicit very distinct transcriptional activation, revealing a large set of novel genes that are differentially regulated within the first 24 h after the lesion. Here we show that Ankrd1, a gene known to act as a transcriptional modulator, is involved in neurite outgrowth of a DRG neuron‐derived cell line as well as in cultured adult DRG neurons. This gene, and others identified in this study, may be part of the transcriptional regulatory module that orchestrates the onset of successful regeneration.
Nature | 2016
Ai-Hui Tang; Haiwen Chen; Tuo P. Li; Sarah W. R. Metzbower; Harold D. MacGillavry; Thomas A. Blanpied
Synaptic transmission is maintained by a delicate, sub-synaptic molecular architecture, and even mild alterations in synapse structure drive functional changes during experience-dependent plasticity and pathological disorders. Key to this architecture is how the distribution of presynaptic vesicle fusion sites corresponds to the position of receptors in the postsynaptic density. However, while it has long been recognized that this spatial relationship modulates synaptic strength, it has not been precisely described, owing in part to the limited resolution of light microscopy. Using localization microscopy, here we show that key proteins mediating vesicle priming and fusion are mutually co-enriched within nanometre-scale subregions of the presynaptic active zone. Through development of a new method to map vesicle fusion positions within single synapses in cultured rat hippocampal neurons, we find that action-potential-evoked fusion is guided by this protein gradient and occurs preferentially in confined areas with higher local density of Rab3-interacting molecule (RIM) within the active zones. These presynaptic RIM nanoclusters closely align with concentrated postsynaptic receptors and scaffolding proteins, suggesting the existence of a trans-synaptic molecular ‘nanocolumn’. Thus, we propose that the nanoarchitecture of the active zone directs action-potential-evoked vesicle fusion to occur preferentially at sites directly opposing postsynaptic receptor–scaffold ensembles. Remarkably, NMDA receptor activation triggered distinct phases of plasticity in which postsynaptic reorganization was followed by trans-synaptic nanoscale realignment. This architecture suggests a simple organizational principle of central nervous system synapses to maintain and modulate synaptic efficiency.
The Journal of Neuroscience | 2009
Harold D. MacGillavry; Floor J. Stam; Marion M. Sassen; Linde Kegel; William T. Hendriks; Joost Verhaagen; August B. Smit; Ronald E. van Kesteren
Successful regeneration of damaged neurons depends on the coordinated expression of neuron-intrinsic genes. At present however, there is no comprehensive view of the transcriptional regulatory mechanisms underlying neuronal regeneration. We used high-content cellular screening to investigate the functional contribution of 62 transcription factors to regenerative neuron outgrowth. Ten transcription factors are identified that either increase or decrease neurite outgrowth. One of these, NFIL3, is specifically upregulated during successful regeneration in vivo. Paradoxically however, knockdown of NFIL3 and overexpression of dominant-negative NFIL3 both increase neurite outgrowth. Our data show that NFIL3, together with CREB, forms an incoherent feedforward transcriptional regulatory loop in which NFIL3 acts as a negative regulator of CREB-induced regeneration-associated genes.
The Journal of Neuroscience | 2014
Hsiangmin E. Lu; Harold D. MacGillavry; Nicholas A. Frost; Thomas A. Blanpied
Calcium/calmodulin-dependent protein kinase II (CaMKII) is essential for synaptic plasticity underlying memory formation. Some functions of CaMKII are mediated by interactions with synaptic proteins, and activity-triggered translocation of CaMKII to synapses has been heavily studied. However, CaMKII actions away from the postsynaptic density (PSD) remain poorly understood, in part because of the difficulty in discerning where CaMKII binds in live cells. We used photoactivated localization microscopy (PALM) in rat hippocampal neurons to track single molecules of CaMKIIα, mapping its spatial and kinetic heterogeneity at high resolution. We found that CaMKIIα exhibits at least three kinetic subpopulations, even within individual spines. Latrunculin application or coexpression of CaMKIIβ carrying its actin-binding domain strongly modulated CaMKII diffusion, indicating that a major subpopulation is regulated by the actin cytoskeleton. CaMKII in spines was typically more slowly mobile than in dendrites, consistent with presence of a higher density of binding partners or obstacles. Importantly, NMDA receptor stimulation that triggered CaMKII activation prompted the immobilization and presumed binding of CaMKII in spines not only at PSDs but also at other points up to several hundred nanometers away, suggesting that activated kinase does not target only the PSD. Consistent with this, single endogenous activated CaMKII molecules detected via STORM immunocytochemistry were concentrated in spines both at the PSD and at points quite distant from the synapse. Together, these results indicate that CaMKII mobility within spines is determined by association with multiple interacting proteins, even outside the PSD, suggesting diverse mechanisms by which CaMKII may regulate synaptic transmission.
Molecular and Cellular Neuroscience | 2011
Harold D. MacGillavry; Jochem Cornelis; Loek R. van der Kallen; Marion M. Sassen; Joost Verhaagen; August B. Smit; Ronald E. van Kesteren
NFIL3 (nuclear factor IL-3 regulated) is a multifunctional transcription factor implicated in a wide range of physiological processes, including cellular survival, circadian gene expression and natural killer cell development. We recently demonstrated that NFIL3 acts as a repressor of CREB-induced gene expression underlying the regeneration of axotomized DRG sensory neurons. In this study we performed chromatin immunoprecipitation assays combined with microarray technology (ChIP-chip) to reveal direct NFIL3 and CREB target genes in an in vitro cell model for regenerating DRG neurons. We identified 505 promoter regions bound by NFIL3 and 924 promoter regions bound by CREB. Based on promoter analysis of NFIL3-bound genes, we were able to redefine the NFIL3 consensus-binding motif. Histone H3 acetylation profiling and gene expression microarray analysis subsequently indicated that a large fraction (>60%) of NFIL3 target genes were transcriptionally silent, whereas CREB target genes in general were transcriptionally active. Only a small subset of NFIL3 target genes also bound CREB. Computational analysis indicated that a substantial number of NFIL3 target genes share a C/EBP (CCAAT/Enhancer Binding Protein) DNA binding motif. ChIP analysis confirmed binding of C/EBPs to NFIL3 target genes, and knockdown of C/EBPα, C/EBPβ and C/EBPδ, but not C/EBPγ, significantly reduced neurite outgrowth in vitro. Together, our findings show that NFIL3 is a general feed-forward repressor of basic leucine zipper transcription factors that control neurite outgrowth.
Frontiers in Molecular Neuroscience | 2011
Ronald E. van Kesteren; Matthew R.J. Mason; Harold D. MacGillavry; August B. Smit; Joost Verhaagen
The regenerative capacity of injured neurons in the central nervous system is limited due to the absence of a robust neuron-intrinsic injury-induced gene response that supports axon regeneration. In peripheral neurons axotomy induces a large cohort of regeneration-associated genes (RAGs). The forced expression of some of these RAGs in injured neurons has some beneficial effect on axon regeneration, but the reported effects are rather small. Transcription factors (TFs) provide a promising class of RAGs. TFs are hubs in the regeneration-associated gene network, and potentially control the coordinate expression of many RAGs simultaneously. Here we discuss the use of combined experimental and computational methods to identify novel regeneration-associated TFs with a key role in initiating and maintaining the RAG-response in injured neurons. We propose that a relatively small number of hub TFs with multiple functional connections in the RAG network might provide attractive new targets for gene-based and/or pharmacological approaches to promote axon regeneration in the central nervous system.
Experimental Cell Research | 2015
Harold D. MacGillavry; Casper C. Hoogenraad
The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.
The Journal of Neuroscience | 2016
Tuo P. Li; Yu Song; Harold D. MacGillavry; Thomas A. Blanpied; Sridhar Raghavachari
Mechanisms regulating lateral diffusion and positioning of glutamate receptors within the postsynaptic density (PSD) determine excitatory synaptic strength. Scaffold proteins in the PSD are abundant receptor binding partners, yet electron microscopy suggests that the PSD is highly crowded, potentially restricting the diffusion of receptors regardless of binding. However, the contribution of macromolecular crowding to receptor retention remains poorly understood. We combined experimental and computational approaches to test the effect of synaptic crowding on receptor movement and positioning in Sprague Dawley rat hippocampal neurons. We modeled AMPA receptor diffusion in synapses where the distribution of scaffold proteins was determined from photoactivated localization microscopy experiments, and receptor–scaffold association and dissociation rates were adjusted to fit single-molecule tracking and fluorescence recovery measurements. Simulations predicted that variation of receptor size strongly influences the fractional synaptic area the receptor may traverse, and the proportion that may exchange in and out of the synapse. To test the model experimentally, we designed a set of novel transmembrane (TM) probes. A single-pass TM protein with one PDZ binding motif concentrated in the synapse as do AMPARs yet was more mobile there than the much larger AMPAR. Furthermore, either the single binding motif or an increase in cytoplasmic bulk through addition of a single GFP slowed synaptic movement of a small TM protein. These results suggest that both crowding and binding limit escape of AMPARs from the synapse. Moreover, tight protein packing within the PSD may modulate the synaptic dwell time of many TM proteins important for synaptic function. SIGNIFICANCE STATEMENT Small alterations to the distribution within synapses of key transmembrane proteins, such as receptors, can dramatically change synaptic strength. Indeed, many diseases are thought to unbalance neural circuit function in this manner. Processes that regulate this in healthy synapses are unclear, however. By combining computer simulations with imaging methods that examined protein dynamics at multiple scales in space and time, we showed that both steric effects and protein–protein binding each regulate the mobility of receptors in the synapse. Our findings extend our knowledge of the synapse as a crowded environment that counteracts molecular diffusion, and support the idea that both molecular collisions and biochemical binding can be involved in the regulation of neural circuit performance.
Nucleic Acids Research | 2011
Geert Geeven; Harold D. MacGillavry; Ruben Eggers; Marion M. Sassen; Joost Verhaagen; August Benjamin Smit; Mathisca de Gunst; Ronald E. van Kesteren
All cellular processes are regulated by condition-specific and time-dependent interactions between transcription factors and their target genes. While in simple organisms, e.g. bacteria and yeast, a large amount of experimental data is available to support functional transcription regulatory interactions, in mammalian systems reconstruction of gene regulatory networks still heavily depends on the accurate prediction of transcription factor binding sites. Here, we present a new method, log-linear modeling of 3D contingency tables (LLM3D), to predict functional transcription factor binding sites. LLM3D combines gene expression data, gene ontology annotation and computationally predicted transcription factor binding sites in a single statistical analysis, and offers a methodological improvement over existing enrichment-based methods. We show that LLM3D successfully identifies novel transcriptional regulators of the yeast metabolic cycle, and correctly predicts key regulators of mouse embryonic stem cell self-renewal more accurately than existing enrichment-based methods. Moreover, in a clinically relevant in vivo injury model of mammalian neurons, LLM3D identified peroxisome proliferator-activated receptor γ (PPARγ) as a neuron-intrinsic transcriptional regulator of regenerative axon growth. In conclusion, LLM3D provides a significant improvement over existing methods in predicting functional transcription regulatory interactions in the absence of experimental transcription factor binding data.