Harold J. G. Meijer
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harold J. G. Meijer.
Nature | 2009
Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at
Science | 2010
Laura Baxter; Sucheta Tripathy; Naveed Ishaque; Nico Boot; Adriana Cabral; Eric Kemen; Marco Thines; Audrey M. V. Ah-Fong; Ryan G. Anderson; Wole Badejoko; Peter D. Bittner-Eddy; Jeffrey L. Boore; Marcus C. Chibucos; Mary Coates; Paramvir Dehal; Kim D. Delehaunty; Suomeng Dong; Polly Downton; Bernard Dumas; Georgina Fabro; Catrina C. Fronick; Susan I. Fuerstenberg; Lucinda Fulton; Elodie Gaulin; Francine Govers; Linda Karen Hughes; Sean Humphray; Rays H. Y. Jiang; Howard S. Judelson; Sophien Kamoun
6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Genome Biology | 2010
C. André Lévesque; Henk Brouwer; Liliana M. Cano; John P. Hamilton; Carson Holt; Edgar Huitema; Sylvain Raffaele; Gregg P. Robideau; Marco Thines; Joe Win; Marcelo M. Zerillo; Jeffrey L. Boore; Dana Busam; Bernard Dumas; Steve Ferriera; Susan I. Fuerstenberg; Claire M. M. Gachon; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Jessica B. Hostetler; Rays H. Y. Jiang; Justin Johnson; Theerapong Krajaejun; Haining Lin; Harold J. G. Meijer; Barry Moore; Paul F. Morris; Vipaporn Phuntmart
From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
Molecular Plant Pathology | 2015
Sophien Kamoun; Oliver J. Furzer; Jonathan D. G. Jones; Howard S. Judelson; Gul Shad Ali; Ronaldo J. D. Dalio; Sanjoy Guha Roy; Leonardo Schena; Antonios Zambounis; Franck Panabières; David J. Cahill; Michelina Ruocco; Andreia Figueiredo; Xiao‐Ren Chen; Jon Hulvey; Remco Stam; Kurt Lamour; Mark Gijzen; Brett M. Tyler; Niklaus J. Grünwald; M. Shahid Mukhtar; Daniel F. A. Tomé; Mahmut Tör; Guido Van den Ackerveken; John M. McDowell; Fouad Daayf; William E. Fry; Hannele Lindqvist-Kreuze; Harold J. G. Meijer; Benjamin Petre
BackgroundPythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species.ResultsThe P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans.ConclusionsAccess to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
FEBS Letters | 2001
Teun Munnik; Harold J. G. Meijer
Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.
Planta | 1999
Harold J. G. Meijer; Nullin Divecha; H. van den Ende; Alan Musgrave; Teun Munnik
Plants are continuously exposed to all kinds of water stress such as drought and salinity. In order to survive and adapt, they have developed survival strategies that have been well studied, but little is known about the early mechanisms by which the osmotic stress is perceived and transduced into these responses. During the last few years, however, a variety of reports suggest that specific lipid and MAPK pathways are involved. This review briefly summarises them and presents a model showing that osmotic stress is transmitted by multiple signalling pathways.
Biochemical Journal | 2001
Harold J. G. Meijer; Christopher P. Berrie; Cristiano Iurisci; Nullin Divecha; Alan Musgrave; Teun Munnik
Abstract. Cells from several different plant species synthesised a polyphosphoinositide (PPI)-like lipid when osmo-stressed. Synthesis was maximal after about 10 min and was stimulated by a variety of osmolytes. Using NaCl, the strongest response centred around 200 mM. The lipid was shown to be the novel PPI isomer phosphatidyl-inositol 3,5-bisphosphate [PtdIns-(3,5)P2] by analytical thin-layer chromatography and conversion to PtdIns(3,4,5)P3 using recombinant phosphoinositide 4-OH kinase. The results indicate that PtdIns-(3,5)P2 plays a role in a general osmo-signalling pathway in plants. Its potential role is discussed.
PLOS Genetics | 2013
Rays H. Y. Jiang; Irene de Bruijn; Brian J. Haas; Rodrigo Belmonte; Lars Löbach; James S. Christie; Guido Van den Ackerveken; Arnaud Bottin; Vincent Bulone; Sara M. Díaz-Moreno; Bernard Dumas; Lin Fan; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Joshua Z. Levin; Marco Mammella; Harold J. G. Meijer; Paul F. Morris; Chad Nusbaum; Stan Oome; Andrew J. Phillips; David van Rooyen; Elzbieta Rzeszutek; Marcia Saraiva; Christopher J. Secombes; Michael F. Seidl; Berend Snel; Joost H. M. Stassen
Polyphosphoinositides play an important role in membrane trafficking and cell signalling. In plants, two PtdInsP isomers have been described, PtdIns3P and PtdIns4P. Here we report the identification of a third, PtdIns5P. Evidence is based on the conversion of the endogenous PtdInsP pool into PtdIns(4,5)P(2) by a specific PtdIns5P 4-OH kinase, and on in vivo (32)P-labelling studies coupled to HPLC head-group analysis. In Chlamydomonas, 3-8% of the PtdInsP pool was PtdIns5P, 10-15% was PtdIns3P and the rest was PtdIns4P. In seedlings of Vicia faba and suspension-cultured tomato cells, the level of PtdIns5P was about 18%, indicating that PtdIns5P is a general plant lipid that represents a significant proportion of the PtdInsP pool. Activating phospholipase C (PLC) signalling in Chlamydomonas cells with mastoparan increased the turnover of PtdIns(4,5)P(2) at the cost of PtdIns4P, but did not affect the level of PtdIns5P. This indicates that PtdIns(4,5)P(2) is synthesized from PtdIns4P rather than from PtdIns5P during PLC signalling. However, when cells were subjected to hyperosmotic stress, PtdIns5P levels rapidly increased, suggesting a role in osmotic-stress signalling. The potential pathways of PtdIns5P formation are discussed.
Plant Journal | 2010
Jack H. Vossen; Ahmed Abd-El-Haliem; Emilie F. Fradin; Grardy C. M. van den Berg; Sophia K. Ekengren; Harold J. G. Meijer; Alireza Seifi; Yuling Bai; Arjen ten Have; Teun Munnik; Bart P. H. J. Thomma; Matthieu H. A. J. Joosten
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinklers, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.
Molecular Plant-microbe Interactions | 2008
Howard S. Judelson; Audrey M. V. Ah-Fong; George Aux; Anna O. Avrova; Catherine R. Bruce; Cahid Cakir; Luis da Cunha; Laura J. Grenville-Briggs; Maita Latijnhouwers; Wilco Ligterink; Harold J. G. Meijer; Samuel Roberts; Carrie S. Thurber; Stephen C. Whisson; Paul R. J. Birch; Francine Govers; Sophien Kamoun; Pieter van West; John Windass
The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs were isolated and their expression in response to infection with the pathogenic fungus Cladosporium fulvum was studied. We found significant regulation at the transcriptional level of the various SlPLCs, and SlPLC4 and SlPLC6 showed distinct expression patterns in C. fulvum-resistant Cf-4 tomato. We produced the encoded proteins in Escherichia coli and found that both genes encode catalytically active PI-PLCs. To test the requirement of these Sl PLCs for full Cf-4-mediated recognition of the effector Avr4, we knocked down the expression of the encoding genes by virus-induced gene silencing. Silencing of SlPLC4 impaired the Avr4/Cf-4-induced HR and resulted in increased colonisation of Cf-4 plants by C. fulvum expressing Avr4. Furthermore, expression of the gene in Nicotiana benthamiana enhanced the Avr4/Cf-4-induced HR. Silencing of SlPLC6 did not affect HR, whereas it caused increased colonisation of Cf-4 plants by the fungus. Interestingly, Sl PLC6, but not Sl PLC4, was also required for resistance to Verticillium dahliae, mediated by the transmembrane Ve1 resistance protein, and to Pseudomonas syringae, mediated by the intracellular Pto/Prf resistance protein couple. We conclude that there is a differential requirement of PLC isoforms for the plant immune response and that Sl PLC4 is specifically required for Cf-4 function, while Sl PLC6 may be a more general component of resistance protein signalling.