Harold L. Beck
United States Department of Energy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harold L. Beck.
Health Physics | 2002
Harold L. Beck; Burton G. Bennett
From 1945 to 1980, over 500 weapons tests were conducted in the atmosphere at a number of locations around the world. These tests resulted in the release of substantial quantities of radioactive debris to the environment. Local, intermediate, and global fallout deposition densities downwind from test sites depended on the heights of bursts, the yields, and the half-lives and volatilities of the particular fission or activation products, as well as on the meteorological conditions. A number of national and international monitoring programs were established to trace the fallout through the atmosphere and biosphere. These programs included continuous monitoring of ground-level air, exposure rates, and deposition as well as periodic sampling of food, bone, water, soil, and stratospheric air. Although data for specific high-yield tests are still classified, the fission and fusion yields of the various tests and test series have been estimated and from this information the quantities of specific fission and activation products released into the atmosphere have been determined. The geographic and temporal variations in the fallout deposition of specific radionuclides based on both actual measurements and model calculations are discussed in this paper. A feasibility study to estimate the deposition density (deposition per unit area) of particular radionuclides from both Nevada Test Site and “global” fallout on a county-by-county scale for the continental United States is described. These deposition estimates provide a basis for reconstructing population exposure and dose. They support the feasibility of a more detailed evaluation of the population doses that resulted from fallout from atmospheric tests to document the experience fully and to report results more systematically and completely to the world community. The impact of weapons fallout will continue to be felt for years to come since a contaminant baseline has been imposed on the ambient radiation environment that will be an important factor in the assessment of past and future releases of radioactive materials into the biosphere.
Health Physics | 1990
Harold L. Beck; Irene K. Helfer; André Bouville; Mona Dreicer
During periods of weapons testing at the Nevada Test Site (NTS) between 1951 and 1958, the Environmental Measurements Laboratory (EML) monitored daily fallout at about 100 sites in the U.S. using gummed-film collectors. These gummed-film data represent the only comprehensive set of actual measurements of fallout during this period for areas outside the immediate vicinity of the NTS. The measured beta activities originally reported by EML have been reviewed and reevaluated. This reevaluation corrected a number of errors in the original data set and allowed fairly accurate estimates to be made of specific radionuclide depositions from individual NTS shots. Estimates of the geographical and temporal variations in cumulative 137Cs and 131I depositions from all NTS shots through 1957 are presented, as well as estimates of the relative impact of particular shots and test series. The revised gummed-film estimates of total NTS fallout depositions are compared with estimates based on contemporary and historical soil sample analyses. These reevaluated gummed-film fallout deposition estimates are being extensively utilized in a number of ongoing programs to reconstruct the radiation exposure of the U.S. population from Nevada weapons testing.
IEEE Transactions on Nuclear Science | 1980
Harold L. Beck; Kevin M. Miller
Data on the radionuclide content of coal, bottom ash and fly ash are reviewed. Estimates are made of the quantities of various radionuclides released to the environment from coal combustion and the probable resultant radiation doses to the population. Factors that influence these dose estimates, such as particle size, solubility and radon emanating power are discussed.
Health Physics | 2010
Steven L. Simon; André Bouville; Charles E. Land; Harold L. Beck
Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946–1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m−2) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people.
Radiation Research | 2008
Charles E. Land; Z. Zhumadilov; Bi Gusev; Mh Hartshorne; Pw Wiest; Pw Woodward; La Crooks; Nickolas Luckyanov; Cm Fillmore; Zhanat Carr; G. Abisheva; Harold L. Beck; André Bouville; John Langer; R. Weinstock; Ki Gordeev; S Shinkarev; Steven L. Simon
Abstract Land, C. E., Zhumadilov, Z., Gusev, B. I., Hartshorne, M. H., Wiest, P. W., Woodward, P. W., Crooks, L. A., Luckyanov, N. K., Fillmore, C. M., Carr, Z., Abisheva, G., Beck, H. L., Bouville, A., Langer, J., Weinstock, R., Gordeev, K. I., Shinkarev, S. M. and Simon, S. L. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout. Radiat. Res. 169, 373–383 (2008). Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings.
Health Physics | 2002
André Bouville; Steven L. Simon; Charles W. Miller; Harold L. Beck; Lynn R. Anspaugh; Burton G. Bennett
This paper summarizes information about external and internal doses resulting from global fallout and presents preliminary estimates of doses resulting from intermediate fallout in the contiguous United States. Most of the data on global fallout were extracted from the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation, in which the radiation exposures from fallout have been extensively reviewed at regular intervals. United Nations Scientific Committee on the Effects of Atomic Radiation estimated the average effective doses received by the world’s population before 2000 to be about 0.4 mSv from external irradiation and 0.6 mSv from internal irradiation, the main radionuclide contributing to the effective dose being 137Cs. Effective doses received beyond 2000 result mainly from the environmentally mobile, long-lived 14C and amount to about 2.5 mSv summed over present and future generations. Specific information about the doses from fallout received by the United States population is based on the preliminary results of a study requested by the U.S. Congress and conducted jointly by the Centers for Disease Control and Prevention and the National Cancer Institute. Separate calculations were made for the tests conducted at the Nevada Test Site and for the high-yield tests conducted mainly by the United States and the former Soviet Union at sites far away from the contiguous United States (global tests). The estimated average doses from external irradiation received by the United States population were about 0.5 mGy for Nevada Test Site fallout and about 0.7 mGy for global fallout. These values vary little from one organ or tissue of the body to another. In contrast, the average doses from internal irradiation vary markedly from one organ or tissue to another; estimated average thyroid doses to children born in 1951 were about 30 mGy from Nevada Test Site fallout and about 2 mGy from global fallout.
Health Physics | 2015
André Bouville; Richard E. Toohey; John D. Boice; Harold L. Beck; Larry T. Dauer; Keith F. Eckerman; Derek Hagemeyer; Richard Wayne Leggett; Michael T. Mumma; Bruce A. Napier; Kathy Pryor; Marvin Rosenstein; David A. Schauer; Sami Sherbini; Daniel O. Stram; James L. Thompson; John E. Till; Craig Yoder; Cary Zeitlin
The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans [the Million Worker Study (MWS)] is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time and not within seconds, as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiologic study is cancer mortality, but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MWS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups, there is a meaningful component of radionuclide intakes that requires internal radiation dosimetry assessments. Scientific Committee 6-9 has been established by the National Council on Radiation Protection and Measurements (NCRP) to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the MWS. The NCRP dosimetry report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Report Nos. 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the MWS to ensure that certain dosimetry criteria are considered: calculation of annual absorbed doses in the organs of interest, separation of low and high linear-energy transfer components, evaluation of uncertainties, and quality assurance and quality control. It is recognized that the MWS and its approaches to dosimetry are a work in progress and that there will be flexibility and changes in direction as new information is obtained with regard to both dosimetry and the epidemiologic features of the study components. This paper focuses on the description of the various components of the MWS, the available dosimetry results, and the challenges that have been encountered. It is expected that the Committee will complete its report in 2016.
International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry | 1989
Harold L. Beck
Abstract The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.
Health Physics | 2010
Steven L. Simon; André Bouville; Dunstana R. Melo; Harold L. Beck; Robert M. Weinstock
Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume.
Radiation Research | 2015
Charles E. Land; Deukwoo Kwon; F. Owen Hoffman; Brian Moroz; Vladimir Drozdovitch; André Bouville; Harold L. Beck; Nicholas Luckyanov; Robert M. Weinstock; Steven L. Simon
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.