Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harold M. Aukema is active.

Publication


Featured researches published by Harold M. Aukema.


Advances in Nutrition | 2015

Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs

Melissa Gabbs; Shan Leng; Jessay G. Devassy; Monirujjaman; Harold M. Aukema

Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n-3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n-3 PUFAs, oxylipins from n-6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites.


Journal of Agricultural and Food Chemistry | 2011

Blood Pressure Lowering Effect of a Pea Protein Hydrolysate in Hypertensive Rats and Humans

Huan Li; Natalie Prairie; Chibuike C. Udenigwe; Abayomi P. Adebiyi; Paramjit S. Tappia; Harold M. Aukema; Peter J. H. Jones; Rotimi E. Aluko

The blood pressure lowering effect of a pea protein hydrolysate (PPH) that contained <3 kDa peptides, isolated by membrane ultrafiltration from the thermolysin digest of pea protein isolate (PPI), was examined using different rat models of hypertension as well as hypertensive human subjects. The PPH showed weak in vitro activities against renin and angiotensin converting enzyme (ACE) with inhibitory activities of 17 and 19%, respectively, at 1 mg/mL test concentration. Oral administration of the PPH to spontaneously hypertensive rats (SHR) at doses of 100 and 200 mg/kg body weight led to a lowering of hourly systolic blood pressure (SBP), with a maximum reduction of 19 mmHg at 4 h. In contrast, orally administered unhydrolyzed PPI had no blood pressure reducing effect in SHR, suggesting that thermolysin hydrolysis may have been responsible for releasing bioactive peptides from the native protein. Oral administration of the PPH to the Han:SPRD-cy rat (a model of chronic kidney disease) over an 8-week period led to 29 and 25 mmHg reductions in SBP and diastolic blood pressure, respectively. The PPH-fed rats had lower plasma levels of angiotensin II, the major vasopressor involved in development of hypertension, but there was no effect on plasma activity or renal mRNA levels of ACE. However, renal expression of renin mRNA levels was reduced by approximately 50% in the PPH-fed rats, suggesting that reduced renin may be responsible for the reduced levels of angiotensin II. In a 3-week randomized double blind placebo-controlled crossover human intervention trial (7 volunteers), significant (p<0.05) reductions (over placebo) in SBP of 5 and 6 mmHg were obtained in the second and third weeks, respectively, for the PPH group. Therefore, thermolysin derived bioactive peptides from PPH reduced blood pressure in hypertensive rats and human subjects, likely via effects on the renal angiotensin system.


Hypertension | 2014

Flaxseed Consumption Reduces Blood Pressure in Patients With Hypertension by Altering Circulating Oxylipins via an α-Linolenic Acid–Induced Inhibition of Soluble Epoxide Hydrolase

Stephanie P.B. Caligiuri; Harold M. Aukema; Amir Ravandi; Randy Guzman; Elena Dibrov; Grant N. Pierce

&NA;In a randomized, double-blinded, controlled clinical trial, participants with peripheral arterial disease (75% hypertensive) consumed 30 g of milled flaxseed/d for 6 months. The flaxseed group exhibited significant reductions in systolic (−10 mm Hg) and diastolic (−7 mm Hg) blood pressure. Flaxseed contains the n3 fatty acid &agr;-linolenic acid. Plasma &agr;-linolenic acid increased with ingestion of flaxseed and was inversely associated with blood pressure. However, the antihypertensive mechanism was unclear. Oxylipins derived from polyunsaturated fatty acids regulate vascular tone. Therefore, the objective was to examine whether flaxseed consumption altered plasma oxylipins in a manner that influenced blood pressure. Plasma of FlaxPAD (Flaxseed for Peripheral Arterial Disease) participants underwent solid phase extraction and high-performance liquid chromatography–mass spectrometry/mass spectrometry analysis. The flaxseed group exhibited significant decreases in 8 plasma oxylipins versus control. Six of these (5,6-, 8,9-, 11,12-, 14,15-dihydroxyeicosatrienoic acid and 9,10- and 12,13-dihydroxyoctadecenoic acid) were products of soluble epoxide hydrolase, a pharmacological target for antihypertensive treatment. Patients exhibiting a decrease in total plasma soluble epoxide hydrolase–derived oxylipins, exhibited a significant decrease in systolic blood pressure (mean [95% confidence interval], −7.97 [−14.4 to −1.50] mm Hg) versus those who exhibited increased plasma soluble epoxide hydrolase–derived oxylipins (+3.17 [−4.78 to 11.13] mm Hg). These data suggest that a flaxseed bioactive may have decreased blood pressure via soluble epoxide hydrolase inhibition. Using a soluble epoxide hydrolase inhibitor screening assay, increasing concentrations of &agr;-linolenic acid decreased soluble epoxide hydrolase activity (P=0.0048; &rgr;=−0.94). In conclusion, &agr;-linolenic acid in flaxseed may have inhibited soluble epoxide hydrolase, which altered oxylipin concentrations that contributed to the antihypertensive effects in patients with peripheral arterial disease. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00781950


American Journal of Physiology-renal Physiology | 2011

PPAR-γ agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease

Daisuke Yoshihara; Hiroki Kurahashi; Miwa Morita; Masanori Kugita; Yoshiyuki Hiki; Harold M. Aukema; Tamio Yamaguchi; James P. Calvet; Darren P. Wallace; Shizuko Nagao

In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.


Applied Physiology, Nutrition, and Metabolism | 2014

Nutritional and health benefits of pulses.

Adriana N. Mudryj; Nancy Yu; Harold M. Aukema

Pulses (beans, peas, and lentils) have been consumed for at least 10 000 years and are among the most extensively used foods in the world. A wide variety of pulses can be grown globally, making them important both economically as well as nutritionally. Pulses provide protein and fibre, as well as a significant source of vitamins and minerals, such as iron, zinc, folate, and magnesium, and consuming half a cup of beans or peas per day can enhance diet quality by increasing intakes of these nutrients. In addition, the phytochemicals, saponins, and tannins found in pulses possess antioxidant and anti-carcinogenic effects, indicating that pulses may have significant anti-cancer effects. Pulse consumption also improves serum lipid profiles and positively affects several other cardiovascular disease risk factors, such as blood pressure, platelet activity, and inflammation. Pulses are high in fibre and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels. Emerging research examining the effect of pulse components on HIV and consumption patterns with aging populations indicates that pulses may have further effects on health. In conclusion, including pulses in the diet is a healthy way to meet dietary recommendations and is associated with reduced risk of several chronic diseases. Long-term randomized controlled trials are needed to demonstrate the direct effects of pulses on these diseases.


Biochimica et Biophysica Acta | 1993

Purified dietary n − 3 polyunsaturated fatty acids alter diacylglycerol mass and molecular species composition in concanavalin A-stimulated murine splenocytes

Kara Hosack Fowler; David N. McMurray; Yang-Yi Fan; Harold M. Aukema; Robert S. Chapkin

A low-dose, short-term dietary supplementation with highly purified (n-3) fatty acid ethyl esters was studied in mice to determine the effect on splenic cell membrane diacylglycerol mass and composition. Mice were fed diets containing either 3% safflower oil (SAF) ethyl esters, 2% SAF plus 1% eicosapentaenoic acid ethyl ester (EPA), or 2% SAF plus 1% docosahexaenoic acid ethyl ester (DHA). Following a 10-day feeding period, pathogen-free mice were sacrificed and splenic cells isolated and stimulated with concanavalin A (Con A) at 10 micrograms/ml. After 0 min (basal), 5 min, and 180 min, 1,2-diacyl, 1-O-alkyl-2-acyl, and 1-O-alkenyl-2-acyl-sn-glycerol subclasses were isolated and quantitated by HPLC. Diacylglycerol (DAG) was found to be the major diradylglycerol (DG) component in murine splenocytes. DHA-fed mice had significantly (P < 0.05) higher levels of DAG at all stimulation time points relative to EPA and SAF animals. Significant effects (P < 0.05) of diet, time, and a diet x time interaction (P < 0.05) were noted for various DAG molecular species. In general, a significantly higher (n-3) polyunsaturated fatty acid (PUFA) content in the EPA and DHA groups, and a significantly higher (n-6) PUFA content in the SAF group was noted. 18:0-22:5(n-3), 18:1-22:5(n-3) and 16:1-20:5(n-3) species were present only in EPA and DHA-DAG, confirming the incorporation of (n-3) fatty acids into splenocyte DAG. The data indicate that the molecular species composition of murine splenocyte DAG is significantly modulated by low-dose, short-term EPA and DHA feeding. In addition, substitution of SAF with DHA results in an increase in DAG mass. These alterations could potentially influence signal transduction pathways regulating lymphocyte function.


Lipids | 2002

Dietary flax oil reduces renal injury, oxidized LDL content, and tissue n-6/n-3 FA ratio in experimental polycystic kidney disease.

Malcolm R. Ogborn; Evan Nitschmann; Neda Bankovic-Calic; Hope A. Weiler; Harold M. Aukema

As whole flaxseed is beneficial in the treatment of experimental renal disease, we undertook a study to determine whether previously documented benefits of whole flaxseed could be reproduced with dietary low-lignan flax oil (FO), a rich source of α-linolenic acid, in experimental polycystic kidney disease. Male offspring of Han:SPRD-cy heterozygous rats were fed a synthetic diet containing FO or corn oil (CO) for 8 wk from the time of weaning. Renal inflammation, fibrosis, proliferation, cystic change, and oxidized-LDL were assessed morphometrically. Hepatic and renal lipid composition was assessed using GC. FO feeding produced hepatic and renal enrichment of n−3 PUFA and an increase in C18∶>C18 PUFA ratios (18-carbon PUFA compared to longer-chain PUFA), with a reduction in proportion of hepatic long-chain PUFA. The FO-based diet was associated with lower mean cystic change by 29.7% (P=0.018), fibrosis by 21.7% (P=0.017), macrophage infiltration by 31.5% (P< 0.0001), epithelial proliferation by 18.7% (P=0.0035), and ox-LDL detection by 31.4% (P<0.0001) in Han:SPRD-cy heterozygotes. Serum creatinine was significantly lower in FO-fed diseased animals. A small hypocholesterolemic effect was noted in all animals fed FO. FO feeding moderates renal injury, modifies the profile of substrates available for elongation to eicosanoid precursors, and inhibits the elongation of C18 PUFA in this model. The consumption of FO-based products may prove a more practical way of obtaining health benefit than attempts to increase dietary content of unrefined seed.


British Journal of Nutrition | 2012

Pulse consumption in Canadian adults influences nutrient intakes.

Adriana N. Mudryj; Nancy Yu; Terryl J. Hartman; Diane C. Mitchell; Frank R. Lawrence; Harold M. Aukema

Pulses (dry beans, peas, lentils) are nutrient-dense foods that are recommended as good choices in either the vegetable or meat and alternative food groups in Canadas Food Guide. To examine the prevalence and the effect of pulse consumption on nutrient intake in Canadian adults ( ≥ 19 years), we analysed cross-sectional data (n 20,156) from the 2004 Canadian Community Health Survey, Cycle 2·2. Participants were divided into non-consumers and quartiles of pulse intake. Sample weights were applied and logistic regression analysis was used to explore the association of nutrient intakes and pulse consumption, with cultural background, sex, age and economic status included as covariates. On any given day, 13 % of Canadians consume pulses, with the highest consumption in the Asian population. The pulse intake of consumers in the highest quartile was 294 (se 40) g/d and, compared with non-consumers, these individuals had higher intakes of carbohydrate, fibre and protein. As well, the micronutrient intake of pulse consumers was enhanced, resulting in fewer individuals who were below the estimated average requirement for thiamin, vitamin B6, folate, Fe, Mg, P and Zn, compared with non-consumers. Although pulses are generally low in Na, its intake also was higher in pulse consumers. Among the higher quartiles of pulse consumers, fruit and vegetable intake was one serving higher. These data indicate that pulse consumption supports dietary advice that pulses be included in healthful diets. Further studies elucidating the sources of increased Na in pulse consumers will be necessary so that dietary advice to increase consumption of pulses will maximise their nutritional benefits.


Journal of Nutrition | 2013

Dietary Linoleic Acid and α-Linolenic Acid Differentially Affect Renal Oxylipins and Phospholipid Fatty Acids in Diet-Induced Obese Rats

Stephanie P.B. Caligiuri; Karin Love; Tanja Winter; Joy Gauthier; Carla G. Taylor; Tom Blydt-Hansen; Peter Zahradka; Harold M. Aukema

Analysis of oxylipins derived from fatty acids may provide insight into the biological effects of dietary lipids beyond their effects on tissue fatty acid profiles. We have previously observed that diets with higher amounts of α-linolenic acid (ALA; 18:3n3) are associated with reduced obesity-related glomerulopathy (ORG). Therefore, to examine the renal oxylipin profile, the effects of dietary linoleic acid (LA; 18:2n6) and ALA on oxylipins and renal phospholipid fatty acid composition, and the relationship between oxylipins and ORG, diet-induced obese rats displaying ORG were fed 8 different diets for 8 wk as follows (oil/oil = combination of two oils) [shown as ALA/LA (in g) per 100 g oil]: canola/flax (20/18), canola (8/18), soy (9/53), high-oleic canola/canola (5/16), high-oleic canola (2/15), lard/soy (1/8), and safflower (0.2/73). Targeted lipidomic analysis by HPLC-tandem mass spectrometry revealed that LA and ALA oxylipins comprised 60% of the total renal oxylipin profile examined. Of the >60 oxylipins screened, only those derived either directly or indirectly from ALA were associated with less glomerulomegaly, indicative of reduced ORG progression. Both the amount and ratio of dietary LA and ALA influenced renal polyunsaturated fatty acids (PUFAs); in contrast, only fatty acid amount altered oxylipins derived from these fatty acids, but there was no apparent competition by LA or ALA on their formation. Dietary LA incorporation into renal phospholipids was higher than for ALA, but ALA oxylipin:ALA ratios were higher than the analogous LA ratios for select lipoxygenase reactions. This indicates that the effect of dietary ALA on renal oxylipins exceeded what was reflected in renal PUFA composition. In conclusion, dietary LA and ALA have differential effects on renal oxylipins and PUFAs, and ALA-derived oxylipins are associated with renoprotection in this model of ORG.


Lipids | 2004

Modulation of renal injury in pcy mice by dietary fat containing n−3 fatty acids depends on the level and type of fat

Deepa Sankaran; Jing Lu; Neda Bankovic-Calic; Malcolm R. Ogborn; Harold M. Aukema

Low-fat diets and diets containing n−3 fatty acids (FA) slow the progression of renal injury in the male Han:Sprague-Dawley (SPRD)-cy rat model of polycystic kidney disease. To determine whether these dietary fat effects are similar in females and in another model of renal cystic disease, in this study we used both male and female pcy mice to examine the effects of fat level and type on disease progression. Adult pcy mice were fed 4, 10, or 20 g soybean oil/100 g diet for 130 d in study 1. In study 2, weanling pcy mice were fed high or low levels of fat rich in 18∶2n−6 (corn oil, CO) 18∶3n−3 (flaxseed oil/CO 4∶1 g/g, FO), or 22∶6n−3 (algal oil/CO 4∶1 g/g, DO) for 8 wk. In adult pcy mice, low-compared with high-fat diets lowered kidney weights (2.4±0.2 vs. 3.1±0.2 g/100 g body weight, P=0.006) and serum urea nitrogen (SUN) (9.6±0.6 vs. 11.9±0.6 mmol/L, P=0.009), whereas in young pcy mice it reduced renal fibrosis volumes (0.44±0.04 vs. 0.62±0.04 mL/kg body weight, P<0.0001). FO feeding in young pcy mice mitigated the detrimental effects of high fat on fibrosis while not altering kidney size, function, and oxidative damage when compared with the CO-fed mice. In contrast, DO-compared with CO-fed mice had higher kidney weights (2.64±0.07 vs. 2.24±0.08 g/100 g body weight, P=0.005), SUN (9.4±0.57 vs. 7.0±0.62 nmol/L, P<0.0001), and cyst volumes (7.9±0.28 vs. 6.2±0.30 mL/kg body weight, P<0.0001) and similar levels of oxidative damage and fibrosis. The FA compositions of the diets were reflected in the kidneys: 18∶2n−6, 18∶3n−3, and 22∶6n−3 were the highest in the CO, FO, and DO diets, respectively. Dietary effects on kidney disease progression were similar in males and females. A low-fat diet slows progression of renal injury in male and female pcy mice, consistent with findings in the male Han:SPRD-cy rat. Dietary fat type also influenced renal injury, with flaxseed oil diets rich in 18∶3n−3 slowing early fibrosis progression compared with diets rich in 18∶2n−6 or in 22∶6n−3.

Collaboration


Dive into the Harold M. Aukema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge