Haroldo V. Ribeiro
Universidade Estadual de Maringá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haroldo V. Ribeiro.
PLOS ONE | 2013
Luiz G. A. Alves; Haroldo V. Ribeiro; E. K. Lenzi; R. S. Mendes
We report on a quantitative analysis of relationships between the number of homicides, population size and ten other urban metrics. By using data from Brazilian cities, we show that well-defined average scaling laws with the population size emerge when investigating the relations between population and number of homicides as well as population and urban metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value of the urban metrics) and the value that is expected by the scaling law with the population size. This approach has proved to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis, such as the non-explanatory potential of the elderly population when the number of homicides is much above or much below the scaling law, the fact that unemployment has explanatory potential only when the number of homicides is considerably larger than the expected by the power law, and a gender difference in number of homicides, where cities with female population below the scaling law are characterized by a number of homicides above the power law.
Physica A-statistical Mechanics and Its Applications | 2013
Luiz G. A. Alves; Haroldo V. Ribeiro; R. S. Mendes
The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.
Physica A-statistical Mechanics and Its Applications | 2012
Haroldo V. Ribeiro; Luciano Zunino; R. S. Mendes; E. K. Lenzi
Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity–entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.
PLOS ONE | 2016
Quentin S. Hanley; Daniel D. Lewis; Haroldo V. Ribeiro
Urban population scaling of resource use, creativity metrics, and human behaviors has been widely studied. These studies have not looked in detail at the full range of human environments which represent a continuum from the most rural to heavily urban. We examined monthly police crime reports and property transaction values across all 573 Parliamentary Constituencies in England and Wales, finding that scaling models based on population density provided a far superior framework to traditional population scaling. We found four types of scaling: i) non-urban scaling in which a single power law explained the relationship between the metrics and population density from the most rural to heavily urban environments, ii) accelerated scaling in which high population density was associated with an increase in the power-law exponent, iii) inhibited scaling where the urban environment resulted in a reduction in the power-law exponent but remained positive, and iv) collapsed scaling where transition to the high density environment resulted in a negative scaling exponent. Urban scaling transitions, when observed, took place universally between 10 and 70 people per hectare. This study significantly refines our understanding of urban scaling, making clear that some of what has been previously ascribed to urban environments may simply be the high density portion of non-urban scaling. It also makes clear that some metrics undergo specific transitions in urban environments and these transitions can include negative scaling exponents indicative of collapse. This study gives promise of far more sophisticated scale adjusted metrics and indicates that studies of urban scaling represent a high density subsection of overall scaling relationships which continue into rural environments.
EPL | 2011
M. C. Mantovani; Haroldo V. Ribeiro; M. V. Moro; S. Picoli; R. S. Mendes
Nowadays there is an increasing interest of physicists in finding regularities related to social phenomena. This interest is clearly motivated by applications that a statistical mechanical description of the human behavior may have in our society. By using this framework, we address this work to cover an open question related to elections: the choice of elections candidates (candidature process). Our analysis reveals that, apart from the social motivations, this system displays features of traditional out-of-equilibrium physical phenomena such as scale-free statistics and universality. Basically, we found a non-linear (power law) mean correspondence between the number of candidates and the size of the electorate (number of voters), and also that this choice has a multiplicative underlying process (lognormal behavior). The universality of our findings is supported by data from 16 elections from 5 countries. In addition, we show that aspects of scale-free network can be connected to this universal behavior.
PLOS ONE | 2012
Haroldo V. Ribeiro; Luciano Zunino; E. K. Lenzi; Perseu A. Santoro; R. S. Mendes
Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to fractal landscapes generated numerically where we compare our measures with the Hurst exponent; liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; and Ising surfaces where our method identified the critical temperature and also proved to be stable.
Journal of Mathematical Physics | 2013
E. K. Lenzi; Haroldo V. Ribeiro; M.A.F. dos Santos; R. Rossato; R. S. Mendes
We investigate, for an arbitrary initial condition, the time dependent solutions for a fractional Schrodinger equation in the presence of delta potentials by using the Green function approach. The solutions obtained show an anomalous spreading asymptotically characterized by a power-law behavior, which is governed by the order of the fractional spatial operator present in the Schrodinger equation.
Frontiers of Physics in China | 2017
A. A. Tateishi; Haroldo V. Ribeiro; E. K. Lenzi
The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating anomalous diffusive processes.
Physical Review Letters | 2015
Haroldo V. Ribeiro; L. S. Costa; Luiz G. A. Alves; P. A. Santoro; S. Picoli; E. K. Lenzi; R. S. Mendes
We report on an extensive characterization of the cracking noise produced by charcoal samples when dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly distributed internal stresses that promote the fragmentation of the samples and mimic some situations found in mining processes. The results show that, in general, the most fundamental seismic laws ruling earthquakes (the Gutenberg-Richter law, the unified scaling law for the recurrence times, Omoris law, the productivity law, and Båths law) hold under the conditions of the experiment. Some discrepancies were also identified (a smaller exponent in the Gutenberg-Richter law, a stationary behavior in the aftershock rates for long times, and a double power-law relationship in the productivity law) and are related to the different loading conditions. Our results thus corroborate and elucidate the parallel between the seismic laws and fracture experiments caused by a more complex loading condition that also occurs in natural and induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).
European Physical Journal B | 2010
Haroldo V. Ribeiro; R. S. Mendes; L. C. Malacarne; S. Picoli; P. A. Santoro
A random walk-like model is considered to discuss statistical aspects of tournaments. The model is applied to soccer leagues with emphasis on the scores. This competitive system was computationally simulated and the results are compared with empirical data from the English, the German and the Spanish leagues and showed a good agreement with them. The present approach enabled us to characterize a diffusion where the scores are not normally distributed, having a short and asymmetric tail extending towards more positive values. We argue that this non-Gaussian behavior is related with the difference between the teams and with the asymmetry of the scores system. In addition, we compared two tournament systems: the all-play-all and the elimination tournaments.