Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haroon Mohammad is active.

Publication


Featured researches published by Haroon Mohammad.


Journal of Medicinal Chemistry | 2014

Discovery and Characterization of Potent Thiazoles versus Methicillin- and Vancomycin-Resistant Staphylococcus aureus

Haroon Mohammad; Abdelrahman S. Mayhoub; Adil Ghafoor; Muhammad A. Soofi; Ruba A. Alajlouni; Mark Cushman; Mohamed N. Seleem

Methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) infections are growing global health concerns. Structure-activity relationships of phenylthiazoles as a new antimicrobial class have been addressed. We present 10 thiazole derivatives that exhibit strong activity against 18 clinical strains of MRSA and VRSA with acceptable PK profile. Three derivatives revealed an advantage over vancomycin by rapidly eliminating MRSA growth within 6 h, and no derivatives are toxic to HeLa cells at 11 μg/mL.


The Journal of Antibiotics | 2015

Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant staphylococci.

Haroon Mohammad; Abdelrahman S. Mayhoub; Mark Cushman; Mohamed N. Seleem

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a leading cause of death among all fatalities caused by antibiotic-resistant bacteria. With the rise of increasing resistance to current antibiotics, new antimicrobials and treatment strategies are urgently needed. Thiazole compounds have been shown to possess potent antimicrobial activity. A lead thiazole 1 and a potent derivative 2 were synthesized and their activity in combination with glycopeptide antibiotics was determined against an array of MRSA and vancomycin-resistant S. aureus (VRSA) clinical isolates. In addition, the anti-biofilm activity of the novel thiazoles was investigated against S. epidermidis. Compound 2 behaved synergistically with vancomycin against MRSA and was able to resensitize VRSA to vancomycin, reducing its MIC by 512-fold in two strains. In addition, both thiazole compounds were superior to vancomycin in significantly reducing S. epidermidis biofilm mass. Collectively, the results obtained demonstrate that compounds 1 and 2 possess potent antimicrobial activity alone or in combination with vancomycin against multidrug-resistant staphylococci and show potential for use in disrupting staphylococcal biofilm.


Scientific Reports | 2016

Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Tiago J. P. Sobreira; Victoria Hedrick; Lake N. Paul; Mohamed N. Seleem

Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections.


Scientific Reports | 2015

Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Maha I. Hamed; Tiago J. P. Sobreira; Victoria Hedrick; Lake N. Paul; Mohamed N. Seleem

The rapid rise of bacterial resistance to traditional antibiotics combined with the decline in discovery of novel antibacterial agents has created a global public health crisis. Repurposing existing drugs presents an alternative strategy to potentially expedite the discovery of new antimicrobial drugs. The present study demonstrates that simvastatin, an antihyperlipidemic drug exhibited broad-spectrum antibacterial activity against important Gram-positive (including methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative pathogens (once the barrier imposed by the outer membrane was permeabilized). Proteomics and macromolecular synthesis analyses revealed that simvastatin inhibits multiple biosynthetic pathways and cellular processes in bacteria, including selective interference of bacterial protein synthesis. This property appears to assist in simvastatin’s ability to suppress production of key MRSA toxins (α-hemolysin and Panton-Valentine leucocidin) that impair healing of infected skin wounds. A murine MRSA skin infection experiment confirmed that simvastatin significantly reduces the bacterial burden and inflammatory cytokines in the infected wounds. Additionally, simvastatin exhibits excellent anti-biofilm activity against established staphylococcal biofilms and demonstrates the ability to be combined with topical antimicrobials currently used to treat MRSA skin infections. Collectively the present study lays the foundation for further investigation of repurposing simvastatin as a topical antibacterial agent to treat skin infections.


European Journal of Medicinal Chemistry | 2015

Synthesis and antibacterial evaluation of a novel series of synthetic phenylthiazole compounds against methicillin-resistant Staphylococcus aureus (MRSA)

Haroon Mohammad; P. V. Narasimha Reddy; Dennis Monteleone; Abdelrahman S. Mayhoub; Mark Cushman; Mohamed N. Seleem

Methicillin-resistant Staphylococcus aureus infections are a significant global health challenge in part due to the emergence of strains exhibiting resistance to nearly all classes of antibiotics. This underscores the urgent need for the rapid development of novel antimicrobials to circumvent this burgeoning problem. Previously, whole-cell screening of a library of 2,5-disubstituted thiazole compounds revealed a lead compound exhibiting potent antimicrobial activity against MRSA. The present study, conducting a more rigorous analysis of the structure-activity relationship of this compound, reveals a nonpolar, hydrophobic functional group is favored at thiazole-C2 and an ethylidenehydrazine-1-carboximidamide moiety is necessary at C5 for the compound to possess activity against MRSA. Furthermore, the MTS assay confirmed analogs 5, 22d, and 25 exhibited an improved toxicity profile (not toxic up to 40 μg/mL to mammalian cells) over the lead 1. Analysis with human liver microsomes revealed compound 5 was more metabolically stable compared to the lead compound (greater than eight-fold improvement in the half-life in human liver microsomes). Collectively the results presented demonstrate the novel thiazole derivatives synthesized warrant further exploration for potential use as future antimicrobial agents for the treatment of multidrug-resistant S. aureus infections.


Scientific Reports | 2016

Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens.

Mostafa F. N. Abushahba; Haroon Mohammad; Shankar Thangamani; Asmaa A.A. Hussein; Mohamed N. Seleem

There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit (rpoA) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro, in cell culture, and in a Caenorhabditis elegans (C. elegans) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O, and two phospholipases plcA and plcB) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens.


PLOS ONE | 2015

Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius.

Haroon Mohammad; P. V. Narasimha Reddy; Dennis Monteleone; Abdelrahman S. Mayhoub; Mark Cushman; G. Kenitra Hammac; Mohamed N. Seleem

Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multi-step resistance selection analysis revealed compounds 4 and 5 exhibited a modest (two-fold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents.


Journal of Medicinal Chemistry | 2016

Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties.

Mohammed A. Seleem; Ahmed M. Disouky; Haroon Mohammad; Tamer M. Abdelghany; Ahmed S. Mancy; Sammar A. Bayoumi; Ahmed H. Elshafeey; Ahmed El-Morsy; Mohamed N. Seleem; Abdelrahman S. Mayhoub

A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis.


Biochimica et Biophysica Acta | 2017

Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells

Shankar Thangamani; Hassan E. Eldesouky; Haroon Mohammad; Pete E. Pascuzzi; Larisa V. Avramova; Tony R. Hazbun; Mohamed N. Seleem

BACKGROUND Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. METHODS The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselens antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. RESULTS Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drugs antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselens in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. CONCLUSION Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. GENERAL SIGNIFICANCE The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development.


International Journal of Antimicrobial Agents | 2016

Repurposing auranofin for the treatment of cutaneous staphylococcal infections

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Tiago J. P. Sobreira; Mohamed N. Seleem

The scourge of multidrug-resistant bacterial infections necessitates the urgent development of novel antimicrobials to address this public health challenge. Drug repurposing is a proven strategy to discover new antimicrobial agents; given that these agents have undergone extensive toxicological and pharmacological analysis, repurposing is an effective method to reduce the time, cost and risk associated with traditional antibiotic innovation. In this study, the in vitro and in vivo antibacterial activities of an antirheumatic drug, auranofin, was investigated against multidrug-resistant Staphylococcus aureus. The results indicated that auranofin possesses potent antibacterial activity against all tested strains of S. aureus, including meticillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA), with minimum inhibitory concentrations (MICs) ranging from 0.0625μg/mL to 0.125μg/mL. In vivo, topical auranofin proved superior to conventional antimicrobials, including fusidic acid and mupirocin, in reducing the mean bacterial load in infected wounds in a murine model of MRSA skin infection. In addition to reducing the bacterial load, topical treatment of auranofin greatly reduced the production of inflammatory cytokines, including tumour necrosis factor-α (TNFα), interleukin-6 (IL-6), interleukin-1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1), in infected skin lesions. Moreover, auranofin significantly disrupted established in vitro biofilms of S. aureus and Staphylococcus epidermidis, more so than the traditional antimicrobials linezolid and vancomycin. Taken together, these results support that auranofin has potential to be repurposed as a topical antimicrobial agent for the treatment of staphylococcal skin and wound infections.

Collaboration


Dive into the Haroon Mohammad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge