Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harper L. Simmons is active.

Publication


Featured researches published by Harper L. Simmons.


Geophysical Research Letters | 2005

One more step toward a warmer Arctic

Igor V. Polyakov; Agnieszka Beszczynska; Eddy C. Carmack; Igor A. Dmitrenko; Eberhard Fahrbach; Ivan E. Frolov; Rüdiger Gerdes; Edmond Hansen; Jürgen Holfort; Vladimir V. Ivanov; Mark A. Johnson; Michael Karcher; Frank Kauker; James H. Morison; Kjell Arild Orvik; Ursula Schauer; Harper L. Simmons; Øystein Skagseth; Vladimir T. Sokolov; Michael Steele; Leonid Timokhov; David Walsh; John E. Walsh

This study was motivated by a strong warming signal seen in mooring-based and oceanographic survey data collected in 2004 in the Eurasian Basin of the Arctic Ocean. The source of this and earlier Arctic Ocean changes lies in interactions between polar and sub-polar basins. Evidence suggests such changes are abrupt, or pulse-like, taking the form of propagating anomalies that can be traced to higher-latitudes. For example, an anomaly found in 2004 in the eastern Eurasian Basin took ∼1.5 years to propagate from the Norwegian Sea to the Fram Strait region, and additional ∼4.5–5 years to reach the Laptev Sea slope. While the causes of the observed changes will require further investigation, our conclusions are consistent with prevailing ideas suggesting the Arctic Ocean is in transition towards a new, warmer state.


Journal of Physical Oceanography | 2010

Arctic Ocean Warming Contributes to Reduced Polar Ice Cap

Igor V. Polyakov; Leonid Timokhov; Vladimir A. Alexeev; Sheldon Bacon; Igor A. Dmitrenko; Louis Fortier; Ivan E. Frolov; Jean-Claude Gascard; Edmond Hansen; V. V. Ivanov; Seymour W. Laxon; C. Mauritzen; Donald K. Perovich; Koji Shimada; Harper L. Simmons; Vladimir T. Sokolov; Michael Steele; John M. Toole

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.


Journal of Climate | 2004

Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years

Igor V. Polyakov; Genrikh Alekseev; Leonid Timokhov; Uma S. Bhatt; Roger L. Colony; Harper L. Simmons; David O. Walsh; John Walsh; V. F. Zakharov

Recent observations show dramatic changes of the Arctic atmosphere‐ice‐ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50‐80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s‐40s and in recent decades and two cold periods earlier in the century and in the 1960s‐70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland‐Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air‐sea‐ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions.


Nature | 2015

The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca R. Centuroni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu J. Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andy Pickering; Robert Pinkel; Luc Rainville

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.


Journal of Physical Oceanography | 2011

Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges

Matthew H. Alford; Jennifer A. MacKinnon; Jonathan D. Nash; Harper L. Simmons; Andy Pickering; Jody M. Klymak; Robert Pinkel; Oliver M. T. Sun; Luc Rainville; Ruth Musgrave; Tamara Beitzel; Ke-Hsien Fu; Chung-Wei Lu

AbstractInternal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the wester...


Journal of Physical Oceanography | 2014

Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate

Amy F. Waterhouse; Jennifer A. MacKinnon; Jonathan D. Nash; Matthew H. Alford; Eric Kunze; Harper L. Simmons; Kurt L. Polzin; Louis C. St. Laurent; Oliver M. T. Sun; Robert Pinkel; Lynne D. Talley; Caitlin B. Whalen; Tycho N. Huussen; Glenn S. Carter; Ilker Fer; Stephanie Waterman; Alberto C. Naveira Garabato; Thomas B. Sanford; Craig M. Lee

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixingobtainedfrom(i)Thorpe-scaleoverturnsfrommooredprofilers,afinescaleparameterizationappliedto (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strainfromfull-depthloweredacousticDoppler currentprofilers (LADCP)andCTDprofiles. Verticalprofiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10 24 )m 2 s 21 and above 1000-m depth is O(10 25 )m 2 s 21 . The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variabilityin theratiobetweenlocal internalwavegeneration and local dissipation.Insomeregions,the depthintegrateddissipationrateiscomparabletotheestimatedpowerinputintothelocalinternalwavefield.Inafew cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However,atmostlocationsthetotalpowerlostthroughturbulentdissipationislessthantheinputintothelocal internal wave field. This suggests dissipation elsewhere, such as continental margins.


Journal of Geophysical Research | 2008

Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins

Igor A. Dmitrenko; Igor V. Polyakov; Sergey Kirillov; Leonid Timokhov; Ivan E. Frolov; Vladimir T. Sokolov; Harper L. Simmons; Vladimir V. Ivanov; David Walsh

We document through the analysis of 2002–2005 observational data the recent Atlantic Water (AW) warming along the Siberian continental margin due to several AW warm impulses that penetrated into the Arctic Ocean through Fram Strait in 1999–2000. The AW temperature record from our long-term monitoring site in the northern Laptev Sea shows several events of rapid AW temperature increase totaling 0.8°C in February–August 2004. We hypothesize the along-margin spreading of this warmer anomaly has disrupted the downstream thermal equilibrium of the late 1990s to earlier 2000s. The anomaly mean velocity of 2.4–2.5 ± 0.2 cm/s was obtained on the basis of travel time required between the northern Laptev Sea and two anomaly fronts delineated over the Eurasian flank of the Lomonosov Ridge by comparing the 2005 snapshot along-margin data with the AW pre-1990 mean. The magnitude of delineated anomalies exceeds the level of pre-1990 mean along-margin cooling and rises above the level of noise attributed to shifting of the AW jet across the basin margins. The anomaly mean velocity estimation is confirmed by comparing mooring-derived AW temperature time series from 2002 to 2005 with the downstream along-margin AW temperature distribution from 2005. Our mooring current meter data corroborate these estimations.


Journal of Physical Oceanography | 2010

Speed and Evolution of Nonlinear Internal Waves Transiting the South China Sea

Matthew H. Alford; Ren-Chieh Lien; Harper L. Simmons; Jody M. Klymak; S. R. Ramp; Yiing Jang Yang; David Tang; Ming-Huei Chang

Abstract In the South China Sea (SCS), 14 nonlinear internal waves are detected as they transit a synchronous array of 10 moorings spanning the waves’ generation site at Luzon Strait, through the deep basin, and onto the upper continental slope 560 km to the west. Their arrival time, speed, width, energy, amplitude, and number of trailing waves are monitored. Waves occur twice daily in a particular pattern where larger, narrower “A” waves alternate with wider, smaller “B” waves. Waves begin as broad internal tides close to Luzon Strait’s two ridges, steepening to O(3–10 km) wide in the deep basin and O(200–300 m) on the upper slope. Nearly all waves eventually develop wave trains, with larger–steeper waves developing them earlier and in greater numbers. The B waves in the deep basin begin at a mean speed of ≈5% greater than the linear mode-1 phase speed for semidiurnal internal waves (computed using climatological and in situ stratification). The A waves travel ≈5%–10% faster than B waves until they reach...


Eos, Transactions American Geophysical Union | 2007

Observational program tracks Arctic Ocean transition to a warmer state

Igor V. Polyakov; Leonid Timokhov; Igor A. Dmitrenko; Vladimir V. Ivanov; Harper L. Simmons; Agnieszka Beszczynska-Möller; Robert R. Dickson; Eberhard Fahrbach; Louis Fortier; Jean-Claude Gascard; Jens Hölemann; N. Penny Holliday; Edmond Hansen; C. Mauritzen; Jan Piechura; Robert S. Pickart; Ursula Schauer; Waldemar Walczowski; Michael Steele

Over the past several decades, the Arctic Ocean has undergone substantial change. Enhanced transport of warmer air from lower latitudes has led to increased Arctic surface air temperature. Concurrent reductions in Arctic ice extent and thickness have been documented. The first evidence of warming in the intermediate Atlantic Water (AW, water depth between 150 and 900 meters) of the Arctic Ocean was found in 1990. Another anomaly, found in 2004, suggests that the Arctic Ocean is in transition toward a new, warmer state [Polyakov et al., 2005, and references therein].


Journal of Climate | 2005

Multidecadal Variability of North Atlantic Temperature and Salinity during the Twentieth Century

Igor V. Polyakov; Uma S. Bhatt; Harper L. Simmons; David O. Walsh; John Walsh; Xiangdong Zhang

Abstract Substantial changes occurred in the North Atlantic during the twentieth century. Here the authors demonstrate, through the analysis of a vast collection of observational data, that multidecadal fluctuations on time scales of 50–80 yr are prevalent in the upper 3000 m of the North Atlantic Ocean. Spatially averaged temperature and salinity from the 0–300- and 1000–3000-m layers vary in opposition: prolonged periods of cooling and freshening (warming and salinification) in one layer are generally associated with opposite tendencies in the other layer, consistent with the notion of thermohaline overturning circulation. In the 1990s, widespread cooling and freshening was a dominant feature in the 1000–3000-m layer, whereas warming and salinification generally dominated in the upper 300 m, except for the subpolar North Atlantic where complex exchanges with the Arctic Ocean occur. The single-signed basin-scale pattern of multidecadal variability is evident from decadal 1000–3000-m temperature and salin...

Collaboration


Dive into the Harper L. Simmons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor V. Polyakov

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Pinkel

University of California

View shared research outputs
Top Co-Authors

Avatar

Leonid Timokhov

Arctic and Antarctic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten C. Buijsman

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge