Harri Valpola
Helsinki University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harri Valpola.
Neural Computation | 2002
Harri Valpola; Juha Karhunen
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear state-space model. The nonlinear mappings in the model are represented using multilayer perceptron networks. The proposed method is computationally demanding, but it allows the use of higher-dimensional nonlinear latent variable models than other existing approaches. Experiments with chaotic data show that the new method is able to blindly estimate the factors and the dynamic process that generated the data. It clearly outperforms currently available nonlinear prediction techniques in this very difficult test problem.
Signal Processing | 2004
Harri Valpola; Markus Harva; Juha Karhunen
In many models, variances are assumed to be constant although this assumption is often unrealistic in practice. Joint modelling of means and variances is difficult in many learning approaches, because it can lead into infinite probability densities. We show that a Bayesian variational technique which is sensitive to probability mass instead of density is able to jointly model both variances and means. We consider a model structure where a Gaussian variable, called variance node, controls the variance of another Gaussian variable. Variance nodes make it possible to build hierarchical models for both variances and means. We report experiments with artificial data which demonstrate the ability of the learning algorithm to find variance sources explaining and characterizing well the variances in the multidimensional data. Experiments with biomedical MEG data show that variance sources are present in real-world signals.
Neural Networks | 2003
Maria Funaro; Erkki Oja; Harri Valpola
In this paper, we demonstrate that independent component analysis, a novel signal processing technique, is a powerful method for separating artefacts from astrophysical image data. When studying far-out galaxies from a series of consequent telescope images, there are several sources for artefacts that influence all the images, such as camera noise, atmospheric fluctuations and disturbances, cosmic rays, and stars in our own galaxy. In the analysis of astrophysical image data it is very important to implement techniques which are able to detect them with great accuracy, to avoid the possible physical events from being eliminated from the data along with the artefacts. For this problem, the linear ICA model holds very accurately because such artefacts are all theoretically independent of each other and of the physical events. Using image data on the M31 Galaxy, it is shown that several artefacts can be detected and recognized based on their temporal pixel luminosity profiles and independent component images. The obtained separation is good and the method is very fast. It is also shown that ICA outperforms principal component analysis in this task. For these reasons, ICA might provide a very useful pre-processing technique for the large amounts of available telescope image data.
Neural Processing Letters | 2005
Alexander Ilin; Harri Valpola
We show that the choice of posterior approximation affects the solution found in Bayesian variational learning of linear independent component analysis models. Assuming the sources to be independent a posteriori favours a solution which has orthogonal mixing vectors. Linear mixing models with either temporally correlated sources or non-Gaussian source models are considered but the analysis extends to nonlinear mixtures as well.
IEEE Transactions on Neural Networks | 2004
Antti Honkela; Harri Valpola
The bits-back coding first introduced by Wallace in 1990 and later by Hinton and van Camp in 1993 provides an interesting link between Bayesian learning and information-theoretic minimum-description-length (MDL) learning approaches. The bits-back coding allows interpreting the cost function used in the variational Bayesian method called ensemble learning as a code length in addition to the Bayesian view of misfit of the posterior approximation and a lower bound of model evidence. Combining these two viewpoints provides interesting insights to the learning process and the functions of different parts of the model. In this paper, the problem of variational Bayesian learning of hierarchical latent variable models is used to demonstrate the benefits of the two views. The code-length interpretation provides new views to many parts of the problem such as model comparison and pruning and helps explain many phenomena occurring in learning.
IEEE Transactions on Neural Networks | 2004
Alexander Ilin; Harri Valpola; Erkki Oja
Changes in a dynamical process are often detected by monitoring selected indicators directly obtained from the process observations, such as the mean values or variances. Standard change detection algorithms such as the Shewhart control charts or the cumulative sum (CUSUM) algorithm are often based on such first- and second-order statistics. Much better results can be obtained if the dynamical process is properly modeled, for example by a nonlinear state-space model, and then the accuracy of the model is monitored over time. The success of the latter approach depends largely on the quality of the model. In practical applications like industrial processes, the state variables, dynamics, and observation mapping are rarely known accurately. Learning from data must be used; however, methods for the simultaneous estimation of the state and the unknown nonlinear mappings are very limited. We use a novel method of learning a nonlinear state-space model, the nonlinear dynamical factor analysis (NDFA) algorithm. It takes a set of multivariate observations over time and fits blindly a generative dynamical latent variable model, resembling nonlinear independent component analysis. We compare the performance of the model in process change detection to various traditional methods. It is shown that NDFA outperforms the classical methods by a wide margin in a variety of cases where the underlying process dynamics changes.
Digital Signal Processing | 2007
Antti Honkela; Harri Valpola; Alexander Ilin; Juha Karhunen
Blind separation of sources from nonlinear mixtures is a challenging and often ill-posed problem. We present three methods for solving this problem: an improved nonlinear factor analysis (NFA) method using a multilayer perceptron (MLP) network to model the nonlinearity, a hierarchical NFA (HNFA) method suitable for larger problems and a post-nonlinear NFA (PNFA) method for more restricted post-nonlinear mixtures. The methods are based on variational Bayesian learning, which provides the needed regularisation and allows for easy handling of missing data. While the basic methods are incapable of recovering the correct rotation of the source space, they can discover the underlying nonlinear manifold and allow reconstruction of the original sources using standard linear independent component analysis (ICA) techniques.
Neural Networks | 2006
Alexander Ilin; Harri Valpola; Erkki Oja
We present an example of exploratory data analysis of climate measurements using a recently developed denoising source separation (DSS) framework. We analyzed a combined dataset containing daily measurements of three variables: surface temperature, sea level pressure and precipitation around the globe, for a period of 56 years. Components exhibiting slow temporal behavior were extracted using DSS with linear denoising. The first component, most prominent in the interannual time scale, captured the well-known El Niño-Southern Oscillation (ENSO) phenomenon and the second component was close to the derivative of the first one. The slow components extracted in a wider frequency range were further rotated using a frequency-based separation criterion implemented by DSS with nonlinear denoising. The rotated sources give a meaningful representation of the slow climate variability as a combination of trends, interannual oscillations, the annual cycle and slowly changing seasonal variations. Again, components related to the ENSO phenomenon emerge very clearly among the found sources.
Neural Processing Letters | 2003
Antti Honkela; Harri Valpola; Juha Karhunen
A popular strategy for dealing with large parameter estimation problems is to split the problem into manageable subproblems and solve them cyclically one by one until convergence. A well-known drawback of this strategy is slow convergence in low noise conditions. We propose using so-called pattern searches which consist of an exploratory phase followed by a line search. During the exploratory phase, a search direction is determined by combining the individual updates of all subproblems. The approach can be used to speed up several well-known learning methods such as variational Bayesian learning (ensemble learning) and expectation-maximization algorithm with modest algorithmic modifications. Experimental results show that the proposed method is able to reduce the required convergence time by 60–85% in realistic variational Bayesian learning problems.
international conference on artificial neural networks | 2001
Krista Lagus; Esa Alhoniemi; Harri Valpola
When modeling large problems with limited representational resources, it is important to be able to construct compact models of the data. Structuring the problem into sub-problems that can be modeled independently is a means for achieving compactness. In this article we introduce Independent Variable Group Analysis (IVGA), a practical, efficient, and general approach for obtaining sparse codes. We apply the IVGA approach for a situation where the dependences within variable groups are modeled using vector quantization. In particular, we derive a cost function needed for model optimization with VQ. Experimental results are presented to show that variables are grouped according to statistical independence, and that a more compact model ensues due to the algorithm.
Collaboration
Dive into the Harri Valpola's collaboration.
Dalle Molle Institute for Artificial Intelligence Research
View shared research outputs