Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harriet C. Isom is active.

Publication


Featured researches published by Harriet C. Isom.


Antimicrobial Agents and Chemotherapy | 2001

In Vitro Susceptibilities of Wild-Type or Drug-Resistant Hepatitis B Virus to (−)-β-d-2,6-Diaminopurine Dioxolane and 2′-Fluoro-5-Methyl-β-l-Arabinofuranosyluracil

Ruth Chin; Tim Shaw; Joseph Torresi; Vittina Sozzi; Christian Trautwein; Thomas Bock; Michael P. Manns; Harriet C. Isom; Phil Furman; Stephen Locarnini

ABSTRACT Prolonged treatment of chronic hepatitis B virus (HBV) infection with lamivudine ([−]-β-l-2′,3′-dideoxy-3′ thiacytidine) or famciclovir may select for viral mutants that are drug resistant due to point mutations in the polymerase gene. Determining whether such HBV mutants are sensitive to new antiviral agents is therefore important. We used a transient transfection system to compare the sensitivities of wild-type HBV and four lamivudine- and/or famciclovir-resistant HBV mutants to adefovir [9-(2-phosphonyl-methoxyethyl)-adenine; PMEA] and the nucleoside analogues (−)-β-d-2, 6-diaminopurine dioxolane (DAPD) and 2′-fluoro-5-methyl-β-l-arabinofuranosyluracil (l-FMAU). The drug-resistant mutants contained amino acid substitutions in the polymerase protein. We found that the M550I and M550V plus L526M substitutions, which confer lamivudine resistance, did not confer cross-resistance to adefovir or DAPD, but conferred cross-resistance to l-FMAU. The M550V substitution in isolation conferred a similar phenotype to M550I, except that it did not confer significant resistance to l-FMAU. The L526M substitution, which is associated with famciclovir resistance, conferred cross-resistance to l-FMAU but not to adefovir or DAPD. Inhibition of HBV secretion by DAPD, l-FMAU, and adefovir did not always correlate with inhibition of the generation of intracellular HBV replicative intermediates, suggesting that these analogs may preferentially inhibit specific stages of the viral replication cycle.


Antimicrobial Agents and Chemotherapy | 2001

Cross-Resistance Testing of Antihepadnaviral Compounds Using Novel Recombinant Baculoviruses Which Encode Drug-Resistant Strains of Hepatitis B Virus

William E. Delaney; Ros Edwards; Danni Colledge; Tim Shaw; Joseph Torresi; Thomas G. Miller; Harriet C. Isom; C.-Thomas Bock; Michael P. Manns; Christian Trautwein; Stephen Locarnini

ABSTRACT Long-term nucleoside analog therapy for hepatitis B virus (HBV)-related disease frequently results in the selection of mutant HBV strains that are resistant to therapy. Molecular studies of such drug-resistant variants are clearly warranted but have been difficult to do because of the lack of convenient and reliable in vitro culture systems for HBV. We previously developed a novel in vitro system for studying HBV replication that relies on the use of recombinant baculoviruses to deliver greater than unit length copies of the HBV genome to HepG2 cells. High levels of HBV replication can be achieved in this system, which has recently been used to assess the effects of lamivudine on HBV replication and covalently closed circular DNA accumulation. The further development of this novel system and its application to determine the cross-resistance profiles of drug-resistant HBV strains are described here. For these studies, novel recombinant HBV baculoviruses which encoded the L526M, M550I, and L526M M550V drug resistance mutations were generated and used to examine the effects of these substitutions on viral sensitivity to lamivudine, penciclovir (the active form of famciclovir), and adefovir, three compounds of clinical importance. The following observations were made: (i) the L526M mutation confers resistance to penciclovir and partial resistance to lamivudine, (ii) the YMDD mutations M550I and L526M M550V confer high levels of resistance to lamivudine and penciclovir, and (iii) adefovir is active against each of these mutants. These findings are supported by the limited amount of clinical data currently available and confirm the utility of the HBV-baculovirus system as an in vitro tool for the molecular characterization of clinically significant HBV strains.


Molecular and Cellular Biology | 1987

Regulation of albumin gene expression in a series of rat hepatocyte cell lines immortalized by simian virus 40 and maintained in chemically defined medium.

Craig D. Woodworth; Harriet C. Isom

A series of simian virus 40 (SV40)-immortalized hepatocyte cell lines were characterized for albumin production, the regulation of albumin production, and the expression of other liver-specific genes. This series of cell lines is particularly useful for studying the regulation of hepatocyte gene expression because the cell lines express liverlike levels of a number of liver-specific functions and do so while growing in a chemically defined medium. SV40-immortalized hepatocyte cell lines were derived from colonies of albumin-producing epithelial cells that arose after primary hepatocytes maintained in chemically defined medium were transfected with SV40 DNA. Some cell lines secreted albumin at levels equal to or greater than those secreted by freshly plated primary hepatocytes, and all but one line continued to produce albumin for more than 20 passages. The variation in albumin secretion among cell lines reflected differences in the amount of albumin produced per cell and not in the percentage of albumin-producing cells in each line. The characterization of selected cell lines showed that albumin production was regulated by cell density during the growth cycle. Albumin production in most cell lines was also regulated by dexamethasone; however, one cell line continued to produce high levels of albumin when the cells were grown in medium lacking dexamethasone, demonstrating that although glucocorticoid can induce albumin production in some cell lines, it is not required for high levels of albumin production by all cells in culture. Regulation of albumin production measured at the level of protein secretion was paralleled by changes in steady-state levels of a 2.3-kilobase albumin RNA. Albumin-producing SV40-immortalized hepatocytes secreted a variety of other plasma proteins, including transferrin, hemopexin, and the third component of complement. These cells also expressed tyrosine aminotransferase activity that was inducible by dexamethasone. Alpha-fetoprotein production was not detected in any of the cell lines examined.


Toxicological Sciences | 2008

Ligand Activation of Peroxisome Proliferator–Activated Receptor β/δ (PPARβ/δ) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression

Weiwei Shan; Prajakta S. Palkar; Iain A. Murray; Emily I. McDevitt; Mary J. Kennett; Boo Hyon Kang; Harriet C. Isom; Gary H. Perdew; Frank J. Gonzalez; Jeffrey M. Peters

Peroxisome proliferator-activated receptor (PPAR) beta/delta-null mice exhibit exacerbated hepatotoxicity in response to administration of carbon tetrachloride (CCl(4)). To determine whether ligand activation of the receptor protects against chemical toxicity in the liver, wild-type and PPARbeta/delta-null mice were administered CCl(4) with or without coadministration of the highly specific PPARbeta/delta ligand GW0742. Biomarkers of liver toxicity, including serum alanine aminotransferase (ALT) and hepatic tumor necrosis factor (TNF) alpha mRNA, were significantly higher in CCl(4)-treated PPARbeta/delta-null mice compared to wild-type mice. Hepatic expression of TNF-like weak inducer of apoptosis receptor (TWEAKr) and S100 calcium-binding protein A6 (S100A6/calcyclin), genes involved in nuclear factor kappa B signaling, was higher in the CCl(4)-treated PPARbeta/delta-null mice compared to wild-type mice. GW0742 treatment resulted in reduced serum ALT concentration and lower expression of CCl(4)-induced TNF-alpha, S100A6, monocyte chemoattractant protein-1 (MCP1), and TWEAKr in wild-type mice, and these effects were not observed in PPARbeta/delta-null mice. Expression of TNF-alpha was higher in PPARbeta/delta-null primary hepatocytes in response to interleukin-1beta treatment compared to wild-type hepatocytes, but GW0742 did not significantly modulate TNF-alpha expression in hepatocytes from either genotype. While PPARbeta/delta-null hepatic stellate exhibited higher rates of proliferation compared to wild-type cells, GW0742 did not affect alpha-smooth muscle actin expression in these cells. Combined, these findings demonstrate that ligand activation of PPARbeta/delta protects against chemically induced hepatotoxicity by downregulating expression of proinflammatory genes. Hepatocytes and hepatic stellate cells do not appear to directly mediate the inhibitory effects of ligand activation of PPARbeta/delta in liver, suggesting the involvement of paracrine and autocrine events mediated by hepatic cells.


Molecular and Cellular Biology | 1988

Tumorigenicity of simian virus 40-hepatocyte cell lines: effect of in vitro and in vivo passage on expression of liver-specific genes and oncogenes.

Craig D. Woodworth; John W. Kreider; L. Mengel; T. Miller; Yunlian Meng; Harriet C. Isom

Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.


Journal of General Virology | 1979

Stimulation of Ornithine Decarboxylase by Human Cytomegalovirus

Harriet C. Isom

Human cytomegalovirus (HCMV) infection of low serum-arrested confluent whole human embryo (Flow 5000) cells markedly stimulated ornithine decarboxylase (ODC) activity. Increased ODC activity was apparent by 12 h post-infection. The capacity of HCMV to stimulate ODC was: (1) dependent upon multiplicity of infection; (2) eliminated when the virus was neutralized with specific antiserum; and (3) sensitive to ultraviolet irradiation. Virus-mediated induction, in contrast to high serum induction of ODC, was not subject to inhibition by polyamines added to the growth medium. Phosphonoacetic acid (PAA) which blocks HCMV replication by inhibiting the activity of HCMV-specific DNA polymerase and which does not prevent HCMV induced stimulation of cell DNA synthesis, reversibly inhibited HCMV-induced stimulation of ODC activity by 74%. Studies with PAA indicated that HCMV-induced stimulation of ODC activity is independent of cell DNA synthesis and that the mechanism regulating virus-induced stimulation may be related to the HCMV-specific DNA polymerase.


Gut | 2011

Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma

Hephzibah Rani S. Tagaram; Nicole A. DiVittore; Brian M. Barth; James M. Kaiser; Diego M. Avella; Eric T. Kimchi; Yixing Jiang; Harriet C. Isom; Mark Kester; Kevin F. Staveley-O'Carroll

Background and objectives Hepatocellular carcinoma (HCC) affects an increasing number of people worldwide. The poor survival rate of patients with HCC is manifested by an aggressive and metastatic phenotype, as well as a poor response to common therapeutic strategies. The purpose of this study was to evaluate the efficacy of nanoliposomal C6-ceramide as an antineoplastic agent in an in vivo model of human HCC. Methods The growth-arresting and pro-apoptotic properties of nanoliposomal C6-ceramide were first evaluated in vitro in human SK-HEP-1 cells by assessing cellular viability, caspase 3/7 activity, annexin-V expression, DNA fragmentation, cell cycle distribution and AKT phosphorylation. SK-HEP-1 cells were then engrafted subcutaneously into athymic nude mice and nanoliposomal C6-ceramide was administered by tail vein injection. Tumour size was monitored over time, followed by excision of tumours to evaluate tumour vascularisation, proliferation, apoptosis and cellular signalling. Results Nanoliposomal C6-ceramide, but not ghost (no ceramide) nanoliposomes, induced apoptotic cell death of SK-HEP-1 cells in vitro, concomitant with an accumulation of cells in the G2 phase of the cell cycle and decreased phosphorylation of AKT. Systemic administration of nanoliposomal C6-ceramide to mice engrafted with SK-HEP-1 tumours reduced tumour vascularisation and proliferation, induced tumour cell apoptosis, decreased phosphorylation of AKT and ultimately blocked tumour growth. Conclusions These studies show that nanoliposomal ceramide is an efficacious antineoplastic agent for the treatment of in vitro and in vivo models of human HCC.


RNA | 2001

A selection system for identifying accessible sites in target RNAs.

Wei-Hua Pan; Heidi F. Devlin; Colleen Kelley; Harriet C. Isom; Gary A. Clawson

Although ribozymes offer tremendous potential for posttranscriptionally controlling expression of targeted genes, their utility is often limited by the accessibility of the targeted regions within the RNA transcripts. Here we describe a method that identifies RNA regions that are accessible to oligonucleotides. Based on this selection protocol, we show that construction of hammerhead ribozymes targeted to the identified regions results in catalytic activities that are consistently and substantially greater than those of ribozymes designed on the basis of computer modeling. Identification of accessible sites should also be widely applicable to design of antisense oligonucleotides and DNAzymes.


Biochimica et Biophysica Acta | 2009

Elevated hepatic iron: a confounding factor in chronic hepatitis C.

Harriet C. Isom; Emily I. McDevitt; Mi Sun Moon

Historically, iron overload in the liver has been associated with the genetic disorders hereditary hemochromatosis and thalassemia and with unusual dietary habits. More recently, elevated hepatic iron levels also have been observed in chronic hepatitis C virus (HCV) infection. Iron overload in the liver causes many changes including induction of oxidative stress, damage to lysosomes and mitochondria, altered oxidant defense systems and stimulation of hepatocyte proliferation. Chronic HCV infection causes numerous pathogenic changes in the liver including induction of endoplasmic reticulum stress, the unfolded protein response, oxidative stress, mitochondrial dysfunction and altered growth control. Understanding the molecular and cellular changes that could occur in a liver which has elevated hepatic iron levels and in which HCV replication and gene expression are ongoing has clinical relevance and represents an area of research in need of further investigation.


Journal of Virology | 2002

Rebound of Hepatitis B Virus Replication in HepG2 Cells after Cessation of Antiviral Treatment

Ayman M. Abdelhamed; Colleen M. Kelley; Thomas G. Miller; Phillip A. Furman; Harriet C. Isom

ABSTRACT Treatment of patients with lamivudine (3TC) results in loss of detectable levels of hepatitis B virus (HBV) DNA from serum; however, the relapse rate, with regard to both reappearance of virus in the bloodstream and hepatic inflammation, is high when therapy is terminated. Although the rebound observed in patients has also been seen in animal hepadnavirus models, rebound has not been analyzed in an in vitro cell culture system. In this study, we used the HBV recombinant baculovirus/HepG2 system to measure the time course of antiviral agent-mediated loss of HBV replication as well as the time course and magnitude of HBV production after release from antiviral treatment. Because of the sensitivity of the system, it was possible to measure secreted virions, intracellular replicative intermediates, and nuclear non-protein-bound HBV DNA and separately analyze individual species of DNA, such as single-stranded HBV DNA compared to the double-stranded form and relaxed circular compared to covalently closed circular HBV DNA. We first determined that HBV replication in the HBV recombinant baculovirus/HepG2 system could proceed for at least 35 days, with a 30-day plateau level of replication, making it possible to study antiviral agent-mediated loss of HBV followed by rebound after cessation of drug treatment. All HBV DNA species decreased in a time-dependent fashion following antiviral treatment, but the magnitude of decline differed for each HBV DNA species, with the covalently closed circular form of HBV DNA being the most resistant to drug therapy. When drug treatment ceased, HBV DNA species reappeared with a pattern that recapitulated the initiation of replication, but with a different time course.

Collaboration


Dive into the Harriet C. Isom's collaboration.

Top Co-Authors

Avatar

Thomas G. Miller

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Edward E. Cable

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. Delaney

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Emily I. McDevitt

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fred Rapp

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi Sun Moon

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

I Georgoff

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge