Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harriëtte Oldenhof is active.

Publication


Featured researches published by Harriëtte Oldenhof.


Biochimica et Biophysica Acta | 1998

A Fourier transform infrared microspectroscopy study of sugar glasses: application to anhydrobiotic higher plant cells

Willem F. Wolkers; Harriëtte Oldenhof; Mark Alberda; Folkert A. Hoekstra

Fourier transform infrared microspectroscopy (FTIR) was used to study glasses of pure carbohydrates and in the cytoplasm of desiccation tolerant plant organs. The position of the OH stretching vibration band (vOH) shifted with temperature. Two linear regression lines were observed in vOH against temperature plots. The temperature at the point of intersection between these two lines coincided with the glass transition temperature (Tg), as determined by other methods. The temperature at the intersection point decreased with increasing water content, which further validates that, indeed, Tg was observed. Tg values that were determined for dry glucose, sucrose, maltose, trehalose and raffinose glasses were 27, 57, 91, 108 and 108 degrees C, respectively. The shift of vOH with temperature, the wavenumber-temperature coefficient (WTC), was higher in sugar glasses having higher Tg. This suggests that glasses are more loosely packed when they have higher Tg. For Typha latifolia pollen and dried Craterostigma plantagineum leaves we obtained similar vOH vs. temperature plots as for carbohydrate glasses, indicating that a glass transition was observed. The Tg in dry pollen was ca. 45 degrees C and in dry plant leaves ca. 65 degrees C, with WTC values comparable to those observed in the carbohydrates. The Tg values in these tissues decreased with increasing water contents. Our data suggest that the carbohydrates that are present in the cytoplasm are primary factors contributing to the glassy state. We conclude that FTIR provides new insights in the structure of glasses in carbohydrates and in biological tissues.


Biotechnology Progress | 2008

Effect of Sucrose and Maltodextrin on the Physical Properties and Survival of Air‐Dried Lactobacillus bulgaricus: An in Situ Fourier Transform Infrared Spectroscopy Study

Harriëtte Oldenhof; Willem F. Wolkers; Fernanda Fonseca; Stéphanie Passot; Michèle Marin

The effect of sucrose, maltodextrin and skim milk on survival of L. bulgaricus after drying was studied. Survival could be improved from 0.01% for cells that were dried in the absence of protectants to 7.8% for cells dried in a mixture of sucrose and maltodextrin. Fourier transform infrared spectroscopy (FTIR) was used to study the effect of the protectants on the overall protein secondary structure and thermophysical properties of the dried cells. Sucrose, maltodextrin and skim milk were found to have minor effects on the membrane phase behavior and the overall protein secondary structure of the dried cells. FTIR was also used to show that the air‐dried cell/protectant solutions formed a glassy state at ambient temperature. 1‐Palmitoyl 2‐oleoyl phosphatidyl choline (POPC) was used in order to determine if sucrose and maltodextrin have the ability to interact with phospholipids during drying. In addition, the glass transition temperature and strength of hydrogen bonds in the glassy state were studied using this model system. Studies using poly‐l‐lysine were done in order to determine if sucrose and maltodextrin are able to stabilize protein structure during drying. As expected, sucrose depressed the membrane phase transition temperature (Tm) of POPC in the dried state and prevented conformational changes of poly‐l‐lysine during drying. Maltodextrin, however, did not depress the Tm of dried POPC and was less effective in preventing conformational changes of poly‐l‐lysine during drying. We suggest that when cells are dried in the presence of sucrose and maltodextrin, sucrose functions by directly interacting with biomolecules, whereas maltodextrin functions as an osmotically inactive bulking compound causing spacing of the cells and strengthening of the glassy matrix.


Fertility and Sterility | 2012

Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy

Victoria Sánchez; Klaus Redmann; Joachim Wistuba; Frank Wübbeling; Martin Burger; Harriëtte Oldenhof; Willem F. Wolkers; Sabine Kliesch; Stefan Schlatt; Con Mallidis

OBJECTIVE To determine whether Raman microspectroscopy can identify different levels of oxidative sperm nDNA damage and to corroborate the findings using an established method and an alternative but complementary spectroscopic technique. DESIGN Three-way comparison of Raman profiles, Fourier transform infrared spectroscopy (FTIR) spectra, and flow-cytometric assessments of sperm nDNA damage. SETTING University-based research laboratory. PATIENT(S) Thirty-eight men attending the infertility clinic at the Centre of Reproductive Medicine and Andrology. INTERVENTION(S) Induction of oxidative damage by Fentons reaction on semen samples. MAIN OUTCOME MEASURE(S) Raman profiles, FTIR spectra, and flow-cytometric analysis of DNA fragmentation. RESULT(S) Raman and FTIR spectra contained distinctive differences between untreated and fragmented nDNA sperm that were indicative of oxidative attack. The changes in Raman profiles were similar to those previously seen and corresponded to the DNA backbone. The peak attributions were corroborated by the FTIR spectra. Principal component analysis of the entire Raman spectra distinguished samples with varying degrees of damage. After determination of a cutoff value (0.63), estimation of the percentage of sperm with nDNA damage using the intensity ratio of Raman peaks (1,050/1,095 cm(-1)) correlated linearly to the flow-cytometric assessment. CONCLUSION(S) Raman microspectroscopy still requires further validation but may potentially provide a means of assessing the nDNA status of a living sperm.


Cryobiology | 2010

Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy

Harriëtte Oldenhof; Katharina Friedel; Harald Sieme; Birgit Glasmacher; Willem F. Wolkers

Cellular membranes are one of the primary sites of injury during freezing and thawing for cryopreservation of cells. Fourier transform infrared spectroscopy (FTIR) was used to monitor membrane phase behavior and ice formation during freezing of stallion sperm. At high subzero ice nucleation temperatures which result in cellular dehydration, membranes undergo a profound transition to a highly ordered gel phase. By contrast, low subzero nucleation temperatures, that are likely to result in intracellular ice formation, leave membrane lipids in a relatively hydrated fluid state. The extent of freezing-induced membrane dehydration was found to be dependent on the ice nucleation temperature, and showed Arrhenius behavior. The presence of glycerol did not prevent the freezing-induced membrane phase transition, but membrane dehydration occurred more gradual and over a wider temperature range. We describe a method to determine membrane hydraulic permeability parameters (E(Lp), Lpg) at subzero temperatures from membrane phase behavior data. In order to do this, it was assumed that the measured freezing-induced shift in wavenumber position of the symmetric CH(2) stretching band arising from the lipid acyl chains is proportional to cellular dehydration. Membrane permeability parameters were also determined by analyzing the H(2)O-bending and -libration combination band, which yielded higher values for both E(Lp) and Lpg as compared to lipid band analysis. These differences likely reflect differences between transport of free and membrane-bound water. FTIR allows for direct assessment of membrane properties at subzero temperatures in intact cells. The derived biophysical membrane parameters are dependent on intrinsic cell properties as well as freezing extender composition.


Biochimica et Biophysica Acta | 2011

Membrane hydraulic permeability changes during cooling of mammalian cells

Maryam Akhoondi; Harriëtte Oldenhof; Christoph Stoll; Harald Sieme; Willem F. Wolkers

In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport.


Theriogenology | 2011

Liposomes for cryopreservation of bovine sperm

T Röpke; Harriëtte Oldenhof; C Leiding; Harald Sieme; Heiner Bollwein; Willem F. Wolkers

In this study, the effect of various unilamellar liposomes on cryopreservation of bovine spermatozoa has been investigated. Liposomes were composed of saturated lipids with various acyl chain lengths: DSPC (18:0), DPPC (16:0), DMPC (14:0), or DLPC (12:0). Alternatively, liposomes were prepared using unsaturated egg phosphatidylcholine (EPC) or DOPC (18:1, neutral), alone or in combination with lipids with various head groups: DOPS (negatively charged), DOPG (negatively charged), and DOPE (neutral). Fourier transform infrared spectroscopy studies showed that bovine sperm membranes display a gradual phase transition from 10 to 24 (o)C. Phase transition temperatures of the liposomes varied from -20 to +53 (o)C. Sperm was incubated in the presence of liposomes for either 6 or 24 h at 4 °C prior to freezing. Postfreeze survival rates were determined based on the percentage of progressively motile cells as well as the percentage of acrosome- and plasma membrane-intact cells. With DOPC liposomes a postthaw progressive motility of 43% was obtained compared with 59% using standard egg yolk freezing extender. Postthaw progressive motility increased up to 52% using DOPC:DOPG (9:1) liposomes, whereas DOPC:DOPS or DOPC:DOPE liposomes did not increase survival compared with DOPC liposomes. Among the saturated lipids, only DMPC was found to increase cryosurvival, up to 44% based on progressive motility. DLPC liposomes caused a complete loss in cell viability, already prior to freezing, whereas DPPC and DSPC liposomes neither positively nor negatively affected cryosurvival. Taken together, the higher postthaw survival obtained with DOPC:DOPG liposomes as compared with DOPC liposomes can likely be attributed to increased liposome-sperm interactions between the charged phosphatidylglycerol groups and charged regions in the sperm membranes. Interestingly, the lipid phase state of the liposomes during preincubation is not the decisive factor for their cryoprotective action.


Biology of Reproduction | 2013

Osmotic Stress and Membrane Phase Changes During Freezing of Stallion Sperm: Mode of Action of Cryoprotective Agents

Harriëtte Oldenhof; Marina Gojowsky; Shangping Wang; Samantha Henke; Chaojie Yu; Karl Rohn; Willem F. Wolkers; Harald Sieme

ABSTRACT The aim of this study was to determine how different membrane-permeable and -impermeable cryoprotective agents modulate tolerance of stallion sperm to osmotic stress and stabilize membranes during cryopreservation. Special emphasis was on hydroxyl ethylene starch (HES), which exposes cells to minimal osmotic stress due to its large molecular weight. Percentages of motile sperm post-thaw were found to be similar when glycerol, sucrose, and HES were used at their optimal concentrations. Percentages of plasma membrane intact sperm after return to isotonic medium were highest for HES. Fourier transform infrared spectroscopy studies were carried out to study subzero membrane phase and permeability behavior. Cryoprotectants were shown to decrease the initial rate of membrane dehydration during freezing, decrease the activation energy for water transport, and increase the total extent of freezing-induced dehydration. Freezing studies with liposomes as a model system showed that only the membrane-permeable cryoprotective agents glycerol and ethylene glycol protected membranes against leakage, whereas egg yolk, sucrose, and HES did not. Differential scanning calorimetry studies showed that sucrose and HES raise the glass transition temperature of the freezing extender and the difference in heat capacity associated with the glass transition. This indicates that these compounds enable formation of a stable glassy matrix at higher subzero temperatures. Sperm cryosurvival rates can be increased by combining different cryoprotectants with different protective functions; membrane permeable cryoprotective agents stabilize membranes and modulate the rate of cellular dehydration, whereas di- and polysaccharides increase the glass transition temperature and facilitate storage and handling at higher subzero temperatures.


Plant Physiology | 2005

Multiple Protein Regions Contribute to Differential Activities of YABBY Proteins in Reproductive Development

Robert J. Meister; Harriëtte Oldenhof; John L. Bowman; Charles S. Gasser

Members of the YABBY family of putative transcription factors participate in abaxial-adaxial identity determination in lateral organs in Arabidopsis (Arabidopsis thaliana). Two YABBY genes specifically expressed in reproductive structures, CRABS CLAW (CRC) and INNER NO OUTER (INO), have additional activities, with CRC promoting nectary development and carpel fusion, and INO responding to spatial regulation by SUPERMAN during ovule development. All YABBY coding regions, except YABBY5, were able to restore outer integument growth in ino-1 mutants when expressed from the INO promoter (PROINO). However, INO was the only YABBY family member that responded correctly to SUPERMAN to maintain the wild-type gynoapical-gynobasal asymmetry of the outer integument. By contrast, INO, FILAMENTOUS FLOWER, and YABBY3 failed to complement crc-1 when expressed from PROCRC. Roles of individual regions of CRC and INO in these effects were assessed using chimeric proteins with PROINO and PROCRC and the relatively constitutive cauliflower mosaic virus PRO35S. Regions of CRC were found to contribute additively to CRC-specific functions in nectary and carpel formation, with a nearly direct relationship between the amount of CRC included and the degree of complementation of crc-1. When combined with INO sequences, the central and carboxyl-terminal regions of CRC were individually sufficient to overcome inhibitory effects of SUPERMAN within the outer integument. Reproductive phenotypes resulting from constitutive expression were dependent on the nature of the central region with some contributions from the amino terminus. Thus, the YABBY family members have both unique and common functional capacities, and residues involved in differential activities are distributed throughout the protein sequences.


Journal of Andrology | 2013

The specific response to capacitating stimuli is a sensitive indicator of chilling injury in hypothermically stored boar spermatozoa

S. Schmid; H. Henning; Harriëtte Oldenhof; Willem F. Wolkers; Anna M. Petrunkina; D. Waberski

Boar spermatozoa are sensitive to storage temperatures below 15 °C. Chilling injury causes loss of motility and membrane integrity in a minority of cells, whereas the main population displays sublethal changes compromising fertility. In this study, changes of the response to capacitation conditions in hypothermically stored boar spermatozoa have been examined using a kinetic approach with well‐defined test and control media. Ejaculates of seven boars were diluted in Beltsville Thawing Solution kept for 3 h at 22 °C or cooled to 17, 10 and 5 °C and stored for 24 and 96 h. At each time point, the standard sperm parameters motility and membrane integrity were evaluated. Subsequently, washed subsamples were incubated in capacitating and control medium before flow cytometric analysis of intracellular calcium content using the Fluo‐3 probe and changes in phospholipid disorder using merocyanine. Kinetic changes of response parameters were monitored in viable (plasma membrane intact) cells. Chilling led to a loss of standard sperm quality traits in a minor subpopulation of cells, whereas storage length had no effect on these parameters. However, responses to incubation as determined by the loss of live cells with low intracellular calcium content showed marked changes in relation to storage conditions. The specific responsiveness to capacitation conditions decreased in close relation to storage temperature and length. In contrast, the merocyanine probe revealed to be limited to detect effects of hypothermic storage. Using Fourier transform infrared spectroscopy, no influence of chilling on membrane phase behaviour was found that might implicate decreased sperm function. In conclusion, assessment of response to capacitating media by monitoring intracellular calcium levels provides a sensitive measure for chilling injury in extended boar semen, and therefore, deserves implementation in hypothermic storage tests.


Biotechnology Progress | 2012

Cryopreservation of platelets using trehalose: The role of membrane phase behavior during freezing

Christiane Gläfke; Maryam Akhoondi; Harriëtte Oldenhof; Harald Sieme; Willem F. Wolkers

In blood banks, platelets are stored at 20–24°C, which limits the maximum time they can be stored. Platelets are chilling sensitive, and they activate when stored at temperatures below 20°C. Cryopreservation could serve as an alternative method for long term storage of platelet concentrates. Recovery rates using dimethyl sulfoxide (DMSO) as cryoprotective agent, however, are low, and removal of DMSO is required before transfusion. In this study, we have explored the use of trehalose for cryopreservation of human platelets while using different cooling rates. Recovery of membrane intact cells and the percentage of nonactivated platelets were used as a measure for survival. In all cases, survival was optimal at intermediate cooling rates of 20°C min−1. Cryopreservation using DMSO resulted in high percentages of activated platelets; namely 54% of the recovered 94%. When using trehalose, 98% of the platelets had intact membranes after freezing and thawing, whereas 76% were not activated. Using Fourier transform infrared spectroscopy, subzero membrane phase behavior of platelets has been studied in the presence of trehalose and DMSO. Furthermore, membrane hydraulic permeability parameters were derived from these data to predict the cell volume response during cooling. Both trehalose and DMSO decrease the activation energy for subzero water transport across cellular membranes. Platelets display a distinct lyotropic membrane phase transition during freezing, irrespective of the presence of cryoprotective agents. We suggest that concomitant uptake of trehalose during freezing could explain the increased survival of platelets cryopreserved with trehalose.

Collaboration


Dive into the Harriëtte Oldenhof's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fern Tablin

University of California

View shared research outputs
Top Co-Authors

Avatar

John H. Crowe

University of California

View shared research outputs
Top Co-Authors

Avatar

Wim Wolkers

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge