Harris A. Gelbard
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harris A. Gelbard.
BioTechniques | 2011
Seth W. Perry; John P. Norman; Justin Barbieri; Edward B. Brown; Harris A. Gelbard
Fluorescent probes for monitoring mitochondrial membrane potential are frequently used for assessing mitochondrial function, particularly in the context of cell fate determination in biological and biomedical research. However, valid interpretation of results obtained with such probes requires careful consideration of numerous controls, as well as possible effects of non-protonic charges on dye behavior. In this context, we provide an overview of some of the important technical considerations, controls, and parallel complementary assays that can be employed to help ensure appropriate interpretation of results, thus providing a practical usage guide for monitoring mitochondrial membrane potentials with cationic probes. In total, this review will help illustrate both the strengths and potential pitfalls of common mitochondrial membrane potential dyes, and highlight best-usage approaches for their efficacious application in life sciences research.
Brain Research | 1999
Andrew I. Brooks; C.A Chadwick; Harris A. Gelbard; Deborah A. Cory-Slechta; Howard J. Federoff
The herbicide paraquat, bearing structural similarity to the known dopaminergic neurotoxicant MPTP, has been suggested as a potential etiologic factor in Parkinsons disease. Consideration of paraquat as a candidate neurotoxicant requires demonstration that systemic delivery produces substantia nigra dopaminergic neuron loss and the attendant neurobehavioral syndrome reflecting depletion of dopamine terminals within the striatum. To address these issues paraquat was administered systemically into adult C57 bl/6 mice, ambulatory behavior monitored, substantia nigra dopamine neuron number and striatal dopamine terminal density quantified. The data indicate that paraquat like MPTP elicits a dose-dependent decrease in substantia nigra dopaminergic neurons assessed by a Fluoro-gold prelabeling method, a decline in striatal dopamine nerve terminal density assessed by measurement of tyrosine hydroxylase immunoreactivity; and neurobehavioral syndrome characterized by reduced ambulatory activity. Taken together, these data suggest that systemically absorbed paraquat crosses the blood-brain barrier to cause destruction of dopamine neurons in the substantia nigra, consequent reduction of dopaminergic innervation of the striatum and a neurobehavioral syndrome similar to the well characterized and bona fide dopaminergic toxin MPTP.
Molecular and Cellular Biology | 1995
Angela K. Talley; Stephen Dewhurst; Seth W. Perry; Sheila C. Dollard; Suryaram Gummuluru; Steven M. Fine; Deborah New; Leon G. Epstein; Howard E. Gendelman; Harris A. Gelbard
Tumor necrosis factor alpha (TNF-alpha) is a candidate human immunodeficiency virus type 1-induced neurotoxin that contributes to the pathogenesis of AIDS dementia complex. We report here on the effects of exogenous TNF-alpha on SK-N-MC human neuroblastoma cells differentiated to a neuronal phenotype with retinoic acid, TNF-alpha caused a dose-dependent loss of viability and a corresponding increase in apoptosis in differentiated SK-N-MC cells but not in undifferentiated cultures. Importantly, intracellular signalling via TNF receptors, as measured by activation of the transcription factor NF-kappa B, was unaltered by retinoic acid treatment. Finally, overexpression of bcl-2 or crmA conferred resistance to apoptosis mediated by TNF-alpha, as did the addition of the antioxidant N-acetylcysteine. These results suggest that TNF-alpha induces apoptosis in neuronal cells by a pathway that involves formation of reactive oxygen intermediates and which can be blocked by specific genetic interventions.
Journal of Neuroimmunology | 1999
Jialin Zheng; Michael Thylin; Anuja Ghorpade; Huangui Xiong; Yuri Persidsky; Robin L. Cotter; Douglas Niemann; Myhanh Che; Yong Chun Zeng; Harris A. Gelbard; Robin B. Shepard; Jennifer M. Swartz; Howard E. Gendelman
The mechanism(s) by which HIV-1 affects neural injury in HIV-1-associated dementia (HAD) remains unknown. To ascertain the role that cellular and viral macrophage products play in HAD neurotoxicity, we explored one potential route for neuronal demise, CXCR4. CXCR4, expressed on lymphocytes and neurons, is both a part of neural development and a co-receptor for HIV-1. Its ligand, stromal cell-derived factor-1alpha (SDF-1alpha), affects neuronal viability. GTP binding protein (G-protein) linked signaling after neuronal exposure to SDF-1alpha, virus-infected monocyte-derived macrophage (MDM) secretory products, and virus was determined. In both human and rat neurons, CXCR4 was expressed at high levels. SDF-1alpha/beta was detected predominantly in astrocytes and at low levels in MDM. SDF-1beta/beta was expressed in HAD brain tissue and upregulated in astrocytes exposed to virus infected and/or immune activated MDM conditioned media (fluids). HIV-1-infected MDM secretions, virus and SDF-1beta induced a G inhibitory (Gi) protein-linked decrease in cyclic AMP (cAMP) and increase inositol 1,4, 5-trisphosphate (IP3) and intracellular calcium. Such effects were partially blocked by antibodies to CXCR4 or removal of virus from MDM fluids. Changes in G-protein-coupled signaling correlated, but were not directly linked, to increased neuronal synaptic transmission, Caspase 3 activation and apoptosis. These data, taken together, suggest that CXCR4-mediated signal transduction may be a potential mechanism for neuronal dysfunction during HAD.
Journal of Biological Chemistry | 1996
Steven M. Fine; Robert A. Angel; Seth W. Perry; Leon G. Epstein; Jeffrey D. Rothstein; Stephen Dewhurst; Harris A. Gelbard
Human immunodeficiency virus (HIV) infection is commonly associated with neurological disease that occurs in the apparent absence of extensive infection of brain cells by HIV, suggesting that indirect mechanisms account for neuropathogenesis in the CNS, perhaps including changes in the normal neuroprotective functions of astrocytes. To test this hypothesis, we examined the effect of the pro-inflammatory cytokine, tumor necrosis factor α (TNFα), produced by HIV-1-infected macrophages and microglia, on glutamate transport by primary human fetal astrocytes (PHFAs). A dose-dependent inhibition of high affinity glutamate uptake sites was observed 12–24 h after addition of exogenous recombinant human TNFα to PHFAs. This effect was specific since it was blocked by a neutralizing monoclonal antibody directed against TNFα. Furthermore, the inhibitory effect was reproduced by a monoclonal antibody that is an agonist at the 55-kDa TNF receptor. These results suggest that the neurotoxic effects of TNFα may be due in part to its ability to inhibit glutamate uptake by astrocytes, which in turn may result in excitotoxic concentrations of glutamate in synapses.
Neuron | 2004
Huang Guo; Dong Liu; Harris A. Gelbard; Tong Cheng; Rae Insalaco; José A. Fernández; Berislav V. Zlokovic
Activated protein C (APC), a serine protease with anticoagulant and anti-inflammatory activities, exerts direct cytoprotective effects on endothelium via endothelial protein C receptor-dependent activation of protease activated receptor 1 (PAR1). Here, we report that APC protects mouse cortical neurons from two divergent inducers of apoptosis, N-methyl-D-aspartate (NMDA) and staurosporine. APC blocked several steps in NMDA-induced apoptosis downstream to nitric oxide, i.e., caspase-3 activation, nuclear translocation of apoptosis-inducing factor (AIF), and induction of p53, and prevented staurosporine-induced apoptosis by blocking caspase-8 activation upstream of caspase-3 activation and AIF nuclear translocation. Intracerebral APC infusion dose dependently reduced NMDA excitotoxicity in mice. By using different anti-PARs antibodies and mice with single PAR1, PAR3, or PAR4 deletion, we demonstrated that direct neuronal protective effects of APC in vitro and in vivo require PAR1 and PAR3. Thus, PAR1 and PAR3 mediate anti-apoptotic signaling by APC in neurons, which may suggest novel treatments for neurodegenerative disorders.
Neuropathology and Applied Neurobiology | 1995
Harris A. Gelbard; Harold James; Leroy R. Sharer; Seth W. Perry; Y. Saito; A. M. Kazee; S. M. Blumberg; Leon G. Epstein
The pathogenesis of human immunodeficiency virus type 1 (HIV‐1) associated dementia in adults involves neuronal loss from discrete areas of the neocortex and subcortical regions, but the mechanism for neuronal death is poorly understood. Gene‐directed cell death resulting in apoptosis is thought to be a normal feature of neuronal development, but little is known about neuronal apoptosis in disease states. We investigated whether HIV‐1 infection of the central nervous system is spatially associated with apoptosis of neurons. Using an in situ technique to identify newly cleaved 3′‐OH ends of DNA as a marker for apoptosis, we demonstrate the presence of apoptotic neurons in cerebral cortex and basal ganglia of children that had HIV‐1 encephalitis with progressive encephalopathy. Furthermore, an association was observed between the localization of apoptotic neurons and perivascular inflammatory cell infiltrates containing HIV‐1 infected macrophages and multinucleated giant cells. Apoptotic neurons and p24–positive macrophages were observed infrequently in cerebral cortex and basal ganglia in children with HIV‐1 infection without encephalitis or clinical encephalopathy. In nine control (HIV‐1 negative) brains, ranging from the first post‐natal month of life to 16.5 years of age, infrequent neuronal apoptosis was observed in three cases. These findings suggest that neuronal apoptosis is unlikely to be associated with post‐natal development except in early post‐natal germinal matrix, and that it may instead represent the end result of specific pathological processes, such as HIV‐1 encephalitis.
Journal of Immunology | 2000
Ning Tong; Seth W. Perry; Qing Zhang; Harold James; Huang Guo; Andrew I. Brooks; Harshawardhan P. Bal; Sandra A. Kinnear; Steven M. Fine; Leon G. Epstein; Daniel J. Dairaghi; Thomas J. Schall; Howard E. Gendelman; Stephen Dewhurst; Leroy R. Sharer; Harris A. Gelbard
HIV-1 infection of the brain results in chronic inflammation, contributing to the neuropathogenesis of HIV-1 associated neurologic disease. HIV-1-infected mononuclear phagocytes (MP) present in inflammatory infiltrates produce neurotoxins that mediate inflammation, dysfunction, and neuronal apoptosis. Neurologic disease is correlated with the relative number of MP in and around inflammatory infiltrates and not viral burden. It is unclear whether these cells also play a neuroprotective role. We show that the chemokine, fractalkine (FKN), is markedly up-regulated in neurons and neuropil in brain tissue from pediatric patients with HIV-1 encephalitis (HIVE) compared with those without HIVE, or that were HIV-1 seronegative. FKN receptors are expressed on both neurons and microglia in patients with HIVE. These receptors are localized to cytoplasmic structures which are characterized by a vesicular appearance in neurons which may be in cell-to-cell contact with MPs. FKN colocalizes with glutamate in these neurons. Similar findings are observed in brain tissue from an adult patient with HIVE. FKN is able to potently induce the migration of primary human monocytes across an endothelial cell/primary human fetal astrocyte trans-well bilayer, and is neuroprotective to cultured neurons when coadministered with either the HIV-1 neurotoxin platelet activating factor (PAF) or the regulatory HIV-1 gene product Tat. Thus focal inflammation in brain tissue with HIVE may up-regulate neuronal FKN levels, which in turn may be a neuroimmune modulator recruiting peripheral macrophages into the brain, and in a paracrine fashion protecting glutamatergic neurons.
Virology | 2003
Zhuying Wang; Olga Pekarskaya; Meryem Bencheikh; Wei Chao; Harris A. Gelbard; Anuja Ghorpade; Jeffrey D. Rothstein; David J. Volsky
L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V(max) for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-alpha (TNF-alpha) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-alpha production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease.
Journal of Biological Chemistry | 1998
Deborah R New; Sanjay B. Maggirwar; Leon G. Epstein; Stephen Dewhurst; Harris A. Gelbard
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system may result in neuronal apoptosis in vulnerable brain regions, including cerebral cortex and basal ganglia. The mechanisms for neuronal loss are likely to be multifactorial and indirect, since HIV-1 productively infects brain-resident macrophages and microglia but does not cause cytolytic infection of neurons in the central nervous system. HIV-1 infection of macrophages and microglia leads to production and release of diffusible factors that result in neuronal cell death, including the HIV-1 regulatory protein Tat. We demonstrate in this report that recombinant Tat1–86 and Tat peptides containing the basic region induce neuronal apoptosis in approximately 50% of vulnerable neurons in both rat and human neuronal cultures, and this apoptotic cell death is mediated by release of the pro-inflammatory cytokine tumor necrosis factor α, and by activation of glutamate receptors of the non-N-methyl-d-aspartate subtype. Finally, we show that Tat-induced apoptosis of human neuronal cell cultures occurs in the absence of activation of the transcription factor NFκB. These findings further define cellular pathways activated by Tat, that dysregulate production of tumor necrosis factor α, and lead to activation of glutamate receptors and neuronal death during HIV-1 infection of the central nervous system.