Harry Alles
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harry Alles.
Applied Surface Science | 2013
Valter Kiisk; Tauno Kahro; Jekaterina Kozlova; Leonard Matisen; Harry Alles
Abstract Laser processing of graphene is of great interest for cutting, patterning and structural engineering purposes. Tunable nanosecond lasers have the advantage of being relatively widespread (compared to e.g. femtosecond or high-power continuous wave lasers). Hereby we have conducted an investigation of the impact of nanosecond laser pulses on CVD graphene. The damage produced by sufficiently strong single shots (pulse width 5xa0ns, wavelength 532 or 266xa0nm) from tunable optical parametric oscillator was investigated by the methods of scanning electron microscopy and optical microspectroscopy (Raman and fluorescence). Threshold of energy density for producing visible damage was found to be ~200xa0mJ/cm 2 . For UV irradiation the threshold could be notably less depending on the origin of sample. Surprisingly strong fluorescence signal was recorded from damaged areas and is attributed to the residues of oxidized graphene.
Central European Journal of Physics | 2011
Harry Alles; Jaan Aarik; Aleks Aidla; Aurelien Fay; Jekaterina Kozlova; Ahti Niilisk; M. Pärs; Mihkel Rähn; Maciej Wiesner; Pertti J. Hakonen; Väino Sammelselg
Atomic layer deposition of HfO2 on unmodified graphene from HfCl4 and H2O was investigated. Surface RMS roughness down to 0.5 nm was obtained for amorphous, 30 nm thick hafnia film grown at 180°C. HfO2 was also deposited in a two-step temperature process where the initial growth of about 1 nm at 170°C was continued up to 10–30 nm at 300°C. This process yielded uniform, monoclinic HfO2 films with RMS roughness of 1.7 nm for 10–12 nm thick films and 2.5 nm for 30 nm thick films. Raman spectroscopy studies revealed that the deposition process caused compressive biaxial strain in graphene, whereas no extra defects were generated. An 11 nm thick HfO2 film deposited onto bilayer graphene reduced the electron mobility by less than 10% at the Dirac point and by 30–40% far away from it.
Applied Physics Letters | 2014
Artjom Berholts; Tauno Kahro; Aare Floren; Harry Alles; Raivo Jaaniso
Photo-induced changes in the electrical conductivity and the sensitivity to oxygen gas of graphene sheets grown by chemical vapor deposition and transferred onto Al2O3 and SiO2 thin film substrates were studied at ambient conditions. The pristine graphene sensors were initially completely insensitive to oxygen gas at room temperature but showed significant (up to 100%) response when illuminated with weak ultraviolet (300u2009nm or 365u2009nm) light. Oxygen response was governed by Langmuir law and its activation was insensitive to humidity. The mechanism of sensitization is analyzed together with other photo-induced effects—negative persistent photo-conduction and photo-induced hysteresis of field effect transistor characteristics. While the reduction of conductivity in air is persistent effect, the oxygen sensitization and enlargement of hysteresis take place only under the direct influence of light. It is concluded that the charge traps with differently adsorbed oxygen and water are involved in these phenomena.
Applied Physics Letters | 2016
Margus Kodu; Artjom Berholts; Tauno Kahro; Tea Avarmaa; Aarne Kasikov; Ahti Niilisk; Harry Alles; Raivo Jaaniso
Graphene as a single-atomic-layer material is fully exposed to environment and has therefore a great potential for creating of sensitive gas sensors. However, in order to realize this potential for different polluting gases, graphene has to be functionalized - adsorption centers of different type and with high affinity to target gases have to be created at its surface. In this present work, modification of graphene by small amounts of laser ablated materials is introduced for this purpose as a versatile and precise tool. The approach was demonstrated with two very different materials chosen for pulsed laser deposition (PLD), a metal (Ag) and a dielectric oxide (ZrO2). It was shown that the gas response and its recovery rate can be significantly enhanced by choosing the PLD target material and deposition conditions. The response to NO2 gas in air was amplified up to 40 times in case of PLD-modified graphene in comparison with pristine graphene and reached 7-8% at 40 ppb of NO2 and 20-30% at 1 ppm of N2. These results were obtained after PLD in gas environment (5 x 10-2 mbar oxygen or nitrogen) and atomic areal densities of deposited materials of were about 10 15 cm-2. The ultimate level of NO2 detection in air, as extrapolated from the experimental data obtained at room temperature under mild UV-excitation, was below 1 ppb.
IOP Conference Series: Materials Science and Engineering | 2013
Raul Rammula; Lauri Aarik; Arne Kasikov; Jekaterina Kozlova; Tauno Kahro; Leonard Matisen; Ahti Niilisk; Harry Alles; Jaan Aarik
Seed-layer approach was studied to initiate atomic layer deposition (ALD) of Al2O3 films on graphene. Low-temperature ALD and electron beam evaporation (EBE) were applied for seed-layer preparation before deposition of the dielectric at 200 °C using trimethyl-aluminum and water or ozone as precursors. To characterize nucleation of the films and possible influence of the ALD processes on the quality of graphene, properties of graphene and Al2O3 films were investigated by Raman spectroscopy, X-ray fluorescence and X-ray photoelectron spectroscopy methods. The results suggest that seed layer formation by low-temperature ALD was more efficient in the O3-based process than in the H2O-based one while EBE seed layer provided fastest growth of Al2O3 together with minimum incubation period.
Beilstein Journal of Nanotechnology | 2017
Margus Kodu; Artjom Berholts; Tauno Kahro; Mati Kook; Peeter Ritslaid; Helina Seemen; Tea Avarmaa; Harry Alles; Raivo Jaaniso
Graphene has been recognized as a promising gas sensing material. The response of graphene-based sensors can be radically improved by introducing defects in graphene using, for example, metal or metal oxide nanoparticles. We have functionalised CVD grown, single-layer graphene by applying pulsed laser deposition (PLD) of V2O5 which resulted in a thin V2O5 layer on graphene with average thickness of ≈0.6 nm. From Raman spectroscopy, it was concluded that the PLD process also induced defects in graphene. Compared to unmodified graphene, the obtained chemiresistive sensor showed considerable improvement of sensing ammonia at room temperature. In addition, the response time, sensitivity and reversibility were essentially enhanced due to graphene functionalisation by laser deposited V2O5. This can be explained by an increased surface density of gas adsorption sites introduced by high energy atoms in laser ablation plasma and formation of nanophase boundaries between deposited V2O5 and graphene.
arXiv: Materials Science | 2011
Harry Alles; Jaan Aarik; Jekaterina Kozlova; Ahti Niilisk; Raul Rammula; Väino Sammelselg
Graphene that is a single hexagonal layer of carbon atoms with very high intrinsic charge carrier mobility (more than 200 000 cm2/Vs at 4.2 K for suspended samples; Bolotin, et al., 2008) attracts attention as a promising material for future nanoelectronics. During last few years, significant advancement has been made in preparation of large-area graphene. The lateral sizes of substrates for graphene layers have been increased up to 3⁄4 m (Bae et al., 2010) and continuous roll-to-roll deposition of graphene has been published (Hesjedal, 2011). This kind of progress might allow one to apply similar planar technologies for fabricating graphene-based devices in future as currently used for processing of siliconbased structures. After very first experiments (Novoselov et al., 2004), in which the electrical properties of isolated graphene sheets were characterized, a lot of attention has been paid to the similar studies, i.e. investigation of uncovered graphene flakes deposited on oxidized silicon wafers that served as back gates. However, in order to realize graphene-based devices, a highquality dielectric on top of graphene is required for electrostatic gates as well as for tunnel barriers for spin injection. For efficient control of charge carrier movement dielectric layers deposited on graphene should be very thin, a few nanometers thick, and of very uniform thickness without any pinholes. At the same time, the dielectric should possess high dielectric constant, high breakdown voltage and low leakage current even at a small thickness. And, of course, it is expected that the high mobility of charge carriers in graphene should not be markedly affected by the dielectric layer. In order to make top-gated graphene-based Field Effect Transistor (FET), Lemme et al. (2007) applied evaporation techniques for preparation of a gate stack with ~20 nm thick SiO2 dielectric layer on graphene. They used p-type Si(100) wafers with a boron doping concentration of 1015 cm-3, which were oxydized to a SiO2 thickness of 300 nm. On these wafers, micromechanically exfoliated graphene flakes were sticked. The Ti/Au source and drain electrodes were prepared using optical lift-off lithography. Next, electron beam lift-off lithography was applied to define a top gate electrode on top of the graphene flake covered with the dielectric (Fig. 1a). Lemme et al. were first to demonstrate that the combined effect of back and top gates can be applied to graphene devices. However, measurements of the back-gate characteristics before
Central European Journal of Physics | 2015
Ahti Niilisk; Tauno Kahro; Valter Kiisk; Mihkel Rähn; Harry Alles; Jaan Aarik; Väino Sammelselg
Abstract A systematic experimental Raman spectroscopic study of twisted bilayer graphene (tBLG) domains localized inside wide-area single layer graphene (SLG) produced by low-pressure CVD on Cu foil and transferred onto SiO2/Si substrate has been performed. According to the Raman characterization the tBLG domains had a great variety of twisting angles θ between the bottom and top graphene layers (6° < θ < 25°). The twisting angle θ was estimated from the spectral position of the rotating R and R modes in the Raman spectrum.Under G band resonance conditions the breathing mode ZO with a frequency of 95- 97 cm−1 was detected, and a breathing mode ZO was found in the spectra between 804 cm−1 and 836 cm−1, its position depending on the twisting angle θ. An almost linear relationship was found between the frequencies ωZO and ωR. Also a few other spectral peculiarities were found, e.g. a high-energy excitation of the G band resonance, the 2G overtone appearing at 3170-3180 cm−1 by the G band resonance, revealing a linear dispersion of 80 cm−1/eV of the 2D band in tBLG
Synthetic Metals | 2015
Maido Merisalu; Tauno Kahro; Jekaterina Kozlova; Ahti Niilisk; Aleksandr Nikolajev; Margus Marandi; Aare Floren; Harry Alles; Väino Sammelselg
Sensors and Actuators B-chemical | 2014
Raivo Jaaniso; Tauno Kahro; Jekaterina Kozlova; Jaan Aarik; Lauri Aarik; Harry Alles; Aare Floren; Alar Gerst; Aarne Kasikov; Ahti Niilisk; Väino Sammelselg