Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harry Pantazopoulos is active.

Publication


Featured researches published by Harry Pantazopoulos.


Neuroscience | 2005

Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala

Sabina Berretta; Harry Pantazopoulos; M. Caldera; P. Pantazopoulos; Denis Paré

Recently, it was reported that stimulation of the infralimbic cortex produces a feedforward inhibition of central amygdala neurons. The interest of this observation comes from the fact that the central nucleus is the main output station of the amygdala for conditioned fear responses and evidence that the infralimbic cortex plays a critical role in the extinction of conditioned fear. However, the identity of the neurons mediating this infralimbic-evoked inhibition of the central nucleus remains unknown. Likely candidates are intercalated amygdala neurons. Indeed, these cells receive glutamatergic afferents from the infralimbic cortex, use GABA as a transmitter, and project to the central amygdala. Thus, the present study was undertaken to test whether, in adult rats, the infralimbic cortex can affect the activity of intercalated neurons. To this end, disinhibition of the infralimbic cortex was induced by local infusion of the non-competitive GABA-A receptor antagonist picrotoxin. Subsequently, neuronal activation was determined bilaterally within the amygdala using induction of the immediate early gene Fos. Infralimbic disinhibition produced a significant increase in the number of Fos-immunoreactive intercalated cells bilaterally whereas no change was detected in the central nucleus. In the basolateral amygdaloid complex, increases in the number of Fos-immunoreactive cells only reached significance in the contralateral lateral nucleus. These results suggest that glutamatergic inputs from the infralimbic cortex directly activate intercalated neurons. Thus, our findings raise the possibility that the infralimbic cortex inhibits conditioned fear via the excitation of intercalated cells and the consequent inhibition of central amygdala neurons.


Schizophrenia Research | 2011

Hippocampal interneurons are abnormal in schizophrenia

Christine Konradi; C. Kevin Yang; Eric I. Zimmerman; Kathryn M. Lohmann; Paul J. Gresch; Harry Pantazopoulos; Sabina Berretta; Stephan Heckers

OBJECTIVE The cellular substrate of hippocampal dysfunction in schizophrenia remains unknown. We tested the hypothesis that hippocampal interneurons are abnormal in schizophrenia, but that the total number of hippocampal neurons in the pyramidal cell layer is normal. METHODS We collected whole hippocampal specimens of 13 subjects with schizophrenia and 20 matched healthy control subjects to study the number of all neurons, the somal volume of neurons, the number of somatostatin- and parvalbumin-positive interneurons and the messenger RNA levels of somatostatin, parvalbumin and glutamic acid decarboxylase 67. RESULTS The total number of hippocampal neurons in the pyramidal cell layer was normal in schizophrenia, but the number of somatostatin- and parvalbumin-positive interneurons, and the level of somatostatin, parvalbumin and glutamic acid decarboxylase mRNA expression were reduced. CONCLUSIONS The study provides strong evidence for a specific defect of hippocampal interneurons in schizophrenia and has implications for emerging models of hippocampal dysfunction in schizophrenia.


Archives of General Psychiatry | 2010

Extracellular Matrix-Glial Abnormalities in the Amygdala and Entorhinal Cortex of Subjects Diagnosed With Schizophrenia

Harry Pantazopoulos; Tsung-Ung W. Woo; Maribel P. Lim; Nicholas Lange; Sabina Berretta

CONTEXT Chondroitin sulfate proteoglycans (CSPGs), a main component of the brain extracellular matrix, regulate developmental and adult neural functions that are highly relevant to the pathogenesis of schizophrenia. Such functions, together with marked expression of CSPGs in astrocytes within the normal human amygdala and evidence of a disruption of astrocytic functions in this disease, point to involvement of CSPG-glial interactions in schizophrenia. HYPOTHESIS Chondroitin sulfate proteoglycan-related abnormalities involve glial cells and extracellular matrix pericellular aggregates (perineuronal nets) in the amygdala and entorhinal cortex of subjects with schizophrenia. DESIGN Postmortem case-control study. SETTING The Translational Neuroscience Laboratory at McLean Hospital, Harvard Medical School. Specimens were obtained from the Harvard Brain Tissue Resource Center at McLean Hospital. PARTICIPANTS Two separate cohorts of healthy control (n = 15; n = 10) and schizophrenic (n = 11; n = 10) subjects and a cohort of subjects with bipolar disorder (n = 11). INTERVENTIONS Quantitative, immunocytological, and histological postmortem investigations. MAIN OUTCOME MEASURES Numerical densities of CSPG-positive glial cells and perineuronal nets, glial fibrillary acidic protein-positive astrocytes, and total numbers of parvalbumin-positive neurons in the deep amygdala nuclei and entorhinal cortex. RESULTS In schizophrenia, massive increases in CSPG-positive glial cells were detected in the deep amygdala nuclei (419%-1162%) and entorhinal cortex (layer II; 480%-1560%). Perineuronal nets were reduced in the lateral nucleus of the amygdala and lateral entorhinal cortex (layer II). Numerical densities of glial fibrillary acidic protein-positive glial cells and total numbers of parvalbumin-positive neurons were unaltered. Changes in CSPG-positive elements were negligible in subjects with bipolar disorder. CONCLUSIONS Marked changes in functionally relevant molecules in schizophrenia point to a pivotal role for extracellular matrix-glial interactions in the pathogenesis of this disease. Disruption of these interactions, unsuspected thus far, may represent a unifying factor contributing to disturbances of neuronal migration, synaptic connectivity, and GABAergic, glutamatergic, and dopaminergic neurotransmission in schizophrenia. The lack of CSPG abnormalities in bipolar disorder points to a distinctive aspect of the pathophysiology of schizophrenia in key medial temporal lobe regions.


Biological Psychiatry | 2007

Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia.

Sabina Berretta; Harry Pantazopoulos; Nicholas Lange

BACKGROUND Growing evidence supports a pivotal role for the amygdala in the pathogenesis of bipolar disorder (BD) and schizophrenia (SZ). However, the occurrence of morphologic changes in the amygdala is currently controversial. METHODS Total number and numeric density of neurons, neuronal somata size, and volume of the lateral (LN), basal (BN), accessory basal (ABN), and cortical (CO) nuclei of the amygdala were measured in 12 normal control, 10 BD, and 16 SZ subjects. RESULTS In BD subjects, reductions of total numbers (41.1%; p = .01) and numeric densities of neurons (14.5%, p = .01), as well as volume (29.0%; p = .01), were detected in LN. Density of neurons was also decreased in ABN of the same subjects (20.8%; p = .0005). These changes were not related to antipsychotics or lithium salt exposure. In SZ subjects, a decrease of total numbers of neurons was detected in LN (23.6%; p = .04). This effect was no longer significant once exposure to antipsychotics was taken into account. CONCLUSIONS These findings offer structural evidence for an involvement of the amygdala in BD. Consequent loss of amygdalar function may account for abnormalities in emotion processing typical of BD subjects. In contrast, changes in SZ were limited and may have been induced by pharmacologic treatment.


Schizophrenia Research | 2015

Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia

Sabina Berretta; Harry Pantazopoulos; Matej Markota; Christopher Brown; Eleni T. Batzianouli

Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons.


Archives of General Psychiatry | 2010

Hippocampal Interneurons in Bipolar Disorder

Christine Konradi; Eric I. Zimmerman; C. Kevin Yang; Kathryn M. Lohmann; Paul J. Gresch; Harry Pantazopoulos; Sabina Berretta; Stephan Heckers

CONTEXT Postmortem studies have reported decreased density and decreased gene expression of hippocampal interneurons in bipolar disorder, but neuroimaging studies of hippocampal volume and function have been inconclusive. OBJECTIVE To assess hippocampal volume, neuron number, and interneurons in the same specimens of subjects with bipolar disorder and healthy control subjects. DESIGN Whole human hippocampi of 14 subjects with bipolar disorder and 18 healthy control subjects were cut at 2.5-mm intervals and sections from each tissue block were either Nissl-stained or stained with antibodies against somatostatin or parvalbumin. Messenger RNA was extracted from fixed tissue and real-time quantitative polymerase chain reaction was performed. SETTING Basic research laboratories at Vanderbilt University and McLean Hospital. SAMPLES Brain specimens from the Harvard Brain Tissue Resource Center at McLean Hospital. MAIN OUTCOME MEASURES Volume of pyramidal and nonpyramidal cell layers, overall neuron number and size, number of somatostatin- and parvalbumin-positive interneurons, and messenger RNA levels of somatostatin, parvalbumin, and glutamic acid decarboxylase 1. RESULTS The 2 groups did not differ in the total number of hippocampal neurons, but the bipolar disorder group showed reduced volume of the nonpyramidal cell layers, reduced somal volume in cornu ammonis sector 2/3, reduced number of somatostatin- and parvalbumin-positive neurons, and reduced messenger RNA levels for somatostatin, parvalbumin, and glutamic acid decarboxylase 1. CONCLUSION Our results indicate a specific alteration of hippocampal interneurons in bipolar disorder, likely resulting in hippocampal dysfunction.


Biological Psychiatry | 2007

Parvalbumin Neurons in the Entorhinal Cortex of Subjects Diagnosed With Bipolar Disorder or Schizophrenia

Harry Pantazopoulos; Nicholas Lange; Ross J. Baldessarini; Sabina Berretta

BACKGROUND Growing evidence indicates that the entorhinal cortex (ECx) might be affected in schizophrenia (SZ) and bipolar disorder (BD). To test whether distinct interneuronal subpopulations might be altered, numbers of parvalbumin-immunoreactive (PVB-IR) neurons were measured in the ECx of BD and SZ subjects. These neurons play a pivotal role within ECx intrinsic circuits. METHODS Numbers, numerical density, and soma size of PVB-IR neurons were measured in the ECx of normal control (n = 16), BD (n = 10), and SZ (n = 10) subjects. The volume of the ECx was measured in Nissl-stained sections. RESULTS In BD, decreases of total numbers (p = .02) and numerical densities (p = .01) of PVB-IR neurons were detected in the ECx. Within distinct subregions, reductions were detected in the superficial layers of the lateral (p = .02), intermediate (p = .04), and caudal (p = .01) ECx. In SZ, total numbers and numerical densities were not altered. A reduction of soma size was present in the intermediate ECx (p = .01). Volume was unaffected in either disorder. CONCLUSIONS In BD, a decrease of PVB-IR neurons may alter intrinsic inhibitory networks within the superficial layers of the ECx. The likely consequence is a disruption of integration and transfer of information from the cerebral cortex to the hippocampus.


Acta Neuropathologica | 2011

Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region

Alice Y. Wang; Kathryn M. Lohmann; C. Kevin Yang; Eric I. Zimmerman; Harry Pantazopoulos; Nicole R. Herring; Sabina Berretta; Stephan Heckers; Christine Konradi

GABAergic interneurons synchronize network activities and monitor information flow. Post-mortem studies have reported decreased densities of cortical interneurons in schizophrenia (SZ) and bipolar disorder (BPD). The entorhinal cortex (EC) and the adjacent subicular regions are a hub for integration of hippocampal and cortical information, a process that is disrupted in SZ. Here we contrast and compare the density of interneuron populations in the caudal EC and subicular regions in BPD type I (BPD-I), SZ, and normal control (NC) subjects. Post-mortem human parahippocampal specimens of 13 BPD-I, 11 SZ and 17 NC subjects were used to examine the numerical density of parvalbumin-, somatostatin- or calbindin-positive interneurons. We observed a reduction in the numerical density of parvalbumin- and somatostatin-positive interneurons in the caudal EC and parasubiculum in BPD-I and SZ, but no change in the subiculum. Calbindin-positive interneuron densities were normal in all brain areas examined. The profile of decreased density was strikingly similar in BPD-I and SZ. Our results demonstrate a specific reduction of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region in BPD-I and SZ, likely disrupting synchronization and integration of cortico-hippocampal circuits.


Translational Psychiatry | 2015

Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala

Harry Pantazopoulos; Matej Markota; F. Jaquet; D. Ghosh; A. Wallin; A. Santos; Bruce Caterson; Sabina Berretta

Perineuronal nets (PNNs) are specialized extracellular matrix aggregates surrounding distinct neuronal populations and regulating synaptic functions and plasticity. Previous findings showed robust PNN decreases in amygdala, entorhinal cortex and prefrontal cortex of subjects with schizophrenia (SZ), but not bipolar disorder (BD). These studies were carried out using a chondroitin sulfate proteoglycan (CSPG) lectin marker. Here, we tested the hypothesis that the CSPG aggrecan, and 6-sulfated chondroitin sulfate (CS-6) chains highly represented in aggrecan, may contribute to these abnormalities. Antibodies against aggrecan and CS-6 (3B3 and CS56) were used in the amygdala of healthy control, SZ and BD subjects. In controls, aggrecan immunoreactivity (IR) was observed in PNNs and glial cells. Antibody 3B3, but not CS56, also labeled PNNs in the amygdala. In addition, dense clusters of CS56 and 3B3 IR encompassed CS56- and 3B3-IR glia, respectively. In SZ, numbers of aggrecan- and 3B3-IR PNNs were decreased, together with marked reductions of aggrecan-IR glial cells and CS-6 (3B3 and CS56)-IR ‘clusters’. In BD, numbers of 3B3-IR PNNs and CS56-IR clusters were reduced. Our findings show disruption of multiple PNN populations in the amygdala of SZ and, more modestly, BD. Decreases of aggrecan-IR glia and CS-6-IR glial ‘clusters’, in sharp contrast to increases of CSPG/lectin-positive glia previously observed, indicate that CSPG abnormalities may affect distinct glial cell populations and suggest a potential mechanism for PNN decreases. Together, these abnormalities may contribute to a destabilization of synaptic connectivity and regulation of neuronal functions in the amygdala of subjects with major psychoses.


The Journal of Comparative Neurology | 2006

Subpopulations of neurons expressing parvalbumin in the human amygdala.

Harry Pantazopoulos; Nicholas Lange; Linda Hassinger; Sabina Berretta

Amygdalar intrinsic inhibitory networks comprise several subpopulations of γ‐aminobutyric acidergic neurons, each characterized by distinct morphological features and clusters of functionally relevant neurochemical markers. In rodents, the calcium‐binding proteins parvalbumin (PVB) and calbindin D28k (CB) are coexpressed in large subpopulations of amygdalar interneurons. PVB‐immunoreactive (‐IR) neurons have also been shown to be ensheathed by perineuronal nets (PNN), extracellular matrix envelopes believed to affect ionic homeostasis and synaptic plasticity. We tested the hypothesis that differential expression of these three markers may define distinct neuronal subpopulations within the human amygdala. Toward this end, triple‐fluorescent labeling using antisera raised against PVB and CB as well as biotinylated Wisteria floribunda lectin for detection of PNN was combined with confocal microscopy. Among the 1,779 PVB‐IR neurons counted, 18% also expressed CB, 31% were ensheathed in PNN, and 7% expressed both CB and PNN. Forty‐four percent of PVB‐IR neurons did not colocalize with either CB or PNN. The distribution of each of these neuronal subgroups showed substantial rostrocaudal gradients. Furthermore, distinct morphological features were found to characterize each neuronal subgroup. In particular, significant differences relative to the distribution and morphology were detected between PVB‐IR neurons expressing CB and PVB‐IR neurons wrapped in PNNs. These results indicate that amygdalar PVB‐IR neurons can be subdivided into at least four different subgroups, each characterized by a specific neurochemical profile, morphological characteristics, and three‐dimensional distribution. Such properties suggest that each of these neuronal subpopulations may play a specific role within the intrinsic circuitry of the amygdala. J. Comp. Neurol. 496:706–722, 2006.

Collaboration


Dive into the Harry Pantazopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge