Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harry R. Gosker is active.

Publication


Featured researches published by Harry R. Gosker.


European Respiratory Journal | 2010

The prevalence of quadriceps weakness in COPD and the relationship with disease severity

John Seymour; Martijn A. Spruit; N S Hopkinson; Samantha A. Natanek; W D-C Man; Abigail S. Jackson; Harry R. Gosker; A. M. W. J. Schols; John Moxham; Michael I. Polkey; Emiel F.M. Wouters

Quadriceps strength relates to exercise capacity and prognosis in chronic obstructive pulmonary disease (COPD). We wanted to quantify the prevalence of quadriceps weakness in COPD and hypothesised that it would not be restricted to patients with severe airflow obstruction or dyspnoea. Predicted quadriceps strength was calculated using a regression equation (incorporating age, sex, height and fat-free mass), based on measurements from 212 healthy subjects. The prevalence of weakness (defined as observed values 1.645 standardised residuals below predicted) was related to Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage and Medical Research Council (MRC) dyspnoea score in two cohorts of stable COPD outpatients recruited from the UK (n = 240) and the Netherlands (n = 351). 32% and 33% of UK and Dutch COPD patients had quadriceps weakness. A significant proportion of patients in GOLD stages 1 and 2, or with an MRC dyspnoea score of 1 or 2, had quadriceps weakness (28 and 26%, respectively). These values rose to 38% in GOLD stage 4, and 43% in patients with an MRC Score of 4 or 5. Quadriceps weakness was demonstrable in one-third of COPD patients attending hospital respiratory outpatient services. Quadriceps weakness exists in the absence of severe airflow obstruction or breathlessness.


American Journal of Respiratory and Critical Care Medicine | 2014

An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease

François Maltais; Marc Decramer; Richard Casaburi; Esther Barreiro; Yan Burelle; Richard Debigaré; P. N. Richard Dekhuijzen; Frits M.E. Franssen; Ghislaine Gayan-Ramirez; Joaquim Gea; Harry R. Gosker; Rik Gosselink; Maurice Hayot; Sabah N. A. Hussain; Wim Janssens; Micheal I. Polkey; Josep Roca; Didier Saey; Annemie M. W. J. Schols; Martijn A. Spruit; Michael Steiner; Tanja Taivassalo; Thierry Troosters; Ioannis Vogiatzis; Peter D. Wagner

BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.


European Respiratory Journal | 2002

Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease

Harry R. Gosker; H. van Mameren; P.J. van Dijk; M.P. Engelen; G.J. van der Vusse; Emiel F.M. Wouters; Annemie M. W. J. Schols

The aim of this study was to examine the nature of fibre-type redistribution in relation to fibre metabolic profile in the vastus lateralis in chronic obstructive pulmonary disease (COPD) and COPD subtypes. Fifteen COPD patients (eight with emphysema stratified by high-resolution computed tomography) and 15 healthy control subjects were studied. A combination of myofibrillar adenosine triphosphatase staining and immunohistochemistry was used to identify pure, as well as hybrid fibre types. For oxidative capacity, fibres were stained for cytochrome c oxidase and succinate dehydrogenase activities, and glycogen phosphorylase for glycolytic capacity. The proportion of type‐I fibres in COPD patients was markedly lower (16% versus 42%), especially in emphysema, and the proportion of hybrid fibres was higher (29% versus 16%) compared to controls. The proportion of fibres staining positive for oxidative enzymes was lower in COPD patients, which correlated with the proportion of type‐I fibres. In COPD oxidative capacity was lower within IIA fibres. The authors conclude that fibre-type transitions are involved in the fibre-type redistribution in chronic obstructive pulmonary disease. Low oxidative capacity is closely related to the proportion of type‐I fibres, but an additional reduction of oxidative enzyme activity is present within IIA fibres. Fibre-type abnormalities may be aggravated in emphysema.


Thorax | 2007

Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis

Harry R. Gosker; Maurice P. Zeegers; Emiel F.M. Wouters; Annemie M. W. J. Schols

Background: Skeletal muscle dysfunction is a common feature in chronic obstructive pulmonary disease (COPD) which is associated with intrinsic muscular abnormalities. One of the most consistently reported alterations is a shift from fibre type I to II in the vastus lateralis of these patients. Surprisingly, the relationship between this shift and the severity and phenotype of COPD remains unclear. A study was conducted to determine whether vastus lateralis muscle fibre type proportions are associated with COPD disease severity and to provide reference values for the proportions of fibre types in the vastus lateralis in COPD. Methods: A systematic review and a meta-analysis were conducted in which muscle fibre type data and markers of disease severity were collected from the literature. Results: The forced expiratory volume in 1 s (FEV1), the ratio of FEV1 to forced vital capacity (FVC) and body mass index were positively associated with the proportion of type I fibres in COPD. A proportion of 51% for vastus lateralis fibre type I and 13% for fibre type IIX were calculated from the combined data as normal values for patients with typical GOLD stage 3–4 COPD aged 60–70 years. Based on these reference values, a proportion of fibre type I <27% and of fibre type IIX >29% were defined as pathologically abnormal. Conclusions: This review sheds new light on the relationship between skeletal muscle abnormalities and important hallmarks of the disease in severe COPD, and identifies absence of data in GOLD stages 1–2. This review also provides reference values on fibre type composition for diagnostic purposes in COPD.


European Respiratory Journal | 2003

Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease

Harry R. Gosker; B. Kubat; Gert Schaart; G.J. van der Vusse; Emiel F.M. Wouters; Annemie M. W. J. Schols

Despite the fact that muscle weakness is a major problem in chronic obstructive pulmonary disease (COPD), detailed information on myopathological changes at the microscopic level in these patients is scarce, if indeed available at all. Vastus lateralis biopsies of 15 COPD weight-stable patients (body mass index (BMI) 23.9±1.0 kg·m−2; fat-free mass index (FFMI) 17.2±1.7 kg·m−2) and 16 healthy age-matched controls (BMI 26.3±0.8 kg·m−2; FFMI 19.6±2.2 kg·m−2) were evaluated. Histochemistry was used to evaluate myopathological features. Immunohistochemistry was used for the detection of macrophages and leukocytes, and active caspase 3 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) as markers of apoptosis. Fatty cell replacement and fibrosis were observed in both groups, the latter being slightly, but significantly, more pronounced in COPD. No differences between COPD and controls were found with respect to central nuclei, necrosis, regeneration, or fibre splitting. Signs of mitochondrial abnormalities were absent and normal numbers of inflammatory cells were found. Active caspase 3 positive myocytes were not observed and no difference was found in the number of TUNEL-positive myonuclei between controls and COPD patients (1.1% versus 1.0%, respectively). The cross-sectional area of type-IIX muscle fibres was smaller in COPD than in controls (2,566 versus 4,248 µm2). Except for the I to IIX shift in fibre types, the selective type-IIX atrophy and a slight accompanying increase in fibrosis and fat cell replacement in chronic obstructive pulmonary disease relative to age-matched controls, no other morphological abnormalities were observed in the muscle biopsies of chronic obstructive pulmonary disease patients. Also, in this group of clinically and weight stable chronic obstructive pulmonary disease patients, apoptosis appeared not to be involved in muscle pathology.


Thorax | 2007

Cytokine profile in quadriceps muscles of patients with severe COPD

Esther Barreiro; Annemie M. W. J. Schols; Michael I. Polkey; Juan B. Gáldiz; Harry R. Gosker; Elisabeth B. Swallow; Carlos Coronell; Joaquim Gea

Background: Systemic proinflammatory cytokines and oxidative stress have been described in association with peripheral muscle wasting and weakness of patients with severe chronic obstructive pulmonary disease (COPD), but their expression in skeletal muscle is unknown. The objectives of the present study were to determine muscle protein levels of selected cytokines in patients with COPD and to study their relationships with protein carbonylation as a marker of oxidative stress, quadriceps function and exercise capacity. Methods: We conducted a cross sectional study in which 36 cytokines were detected using a human antibody array in quadriceps specimens obtained from 19 patients with severe COPD and seven healthy controls. Subsequently, selected cytokines (tumour necrosis factor (TNF)α, TNFα receptors I and II, interleukin (IL) 6, interferon γ, transforming growth factor (TGF) β and vascular endothelial growth factor (VEGF)), as well as protein carbonylation (oxidative stress index) were determined using an enzyme linked immunosorbent assay (ELISA) in all muscles. Results: Compared with controls, the vastus lateralis of patients with COPD showed significantly lower protein ELISA levels of TNFα, which positively correlated with their quadriceps function, TNFα receptor II and VEGF. Protein ELISA levels of IL6, interferon γ and TGFβ did not differ between patients and controls. Quadriceps protein carbonylation was greater in patients and inversely correlated with quadriceps strength among them. Conclusions: These findings do not support the presence of a proinflammatory environment within the quadriceps muscles of clinically and weight stable patients with severe COPD, despite evidence for increased oxidative stress and the presence of muscle weakness.


European Respiratory Journal | 2007

Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD

Alexander Remels; Patrick Schrauwen; Roelinka Broekhuizen; Jean Willems; Sander Kersten; Harry R. Gosker; Annemie M. W. J. Schols

Chronic obstructive pulmonary disease (COPD) is a multiorgan systemic disease. The systemic features are skeletal muscle weakness and cachexia, the latter being associated with systemic inflammation. The exact mechanisms underlying skeletal muscle dysfunction in COPD remain obscure. Recent evidence suggests involvement of the peroxisome proliferator-activated receptors (PPARs) and PPAR-γ coactivator (PGC)-1α in regulation of skeletal muscle morphology and metabolism, and mitochondrial transcription factor A (TFAM) has been implicated in the process of mitochondrial biogenesis. The aim of the present exploratory study was, therefore, to compare these factors in the skeletal muscle of nine healthy control subjects and 14 COPD patients stratified by cachexia. PPAR-γ, PPAR-δ and TFAM were measured at the mRNA and protein level by real-time quantitative PCR and Western blotting, respectively. PPAR-α and PGC-1α were meansured at the mRNA level. PPAR-δ and TFAM protein content, as well as PGC-1α mRNA levels, were decreased in the skeletal muscle of COPD patients compared with healthy controls. The cachectic COPD subgroup was further characterised by decreased PPAR-α mRNA expression and decreased TFAM protein and mRNA levels compared with noncachectic COPD patients. In addition, PPAR-α mRNA levels in skeletal muscle correlated negatively with inflammatory markers in plasma. Therefore, a disturbed expression of these regulatory factors may well underlie the disturbed skeletal muscle functioning in chronic obstructive pulmonary disease.


European Respiratory Journal | 2007

Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD

Harry R. Gosker; Matthijs K. C. Hesselink; Hans Duimel; Kimberly A. Ward; Annemie M. W. J. Schols

Skeletal muscle dysfunction is a well-recognised hallmark of chronic obstructive pulmonary disease (COPD) leading to exercise intolerance. The vastus lateralis of COPD patients is characterised by reduced mitochondrial enzyme activity; however, this is not the case in the tibialis anterior. It is, however, unclear whether the compromised oxidative capacity in the vastus is due to reduced mitochondrial volume density. Muscle biopsies were obtained from the vastus lateralis of six COPD patients and four healthy age-matched controls, and from the tibialis anterior of another six COPD patients and six controls. Mitochondrial number, fractional area and morphometry, as well as Z-line width (as a surrogate marker of fibre type), were analysed using transmission electron microscopy. Mitochondrial number (0.34 versus 0.63 n·µm−2) and fractional area (1.95 versus 4.25%) were reduced in the vastus of COPD patients compared with controls. Despite a reduced mitochondrial number (0.65 versus 0.88 n·µm−2), the mitochondrial fractional area was maintained in the tibialis of COPD patients compared with controls. It can be concluded that the reduced mitochondrial fractional area is likely to contribute to the decreased oxidative capacity in the vastus of chronic obstructive pulmonary disease patients, whereas the maintained mitochondrial fractional area in the tibialis may explain the normal oxidative capacity.


Chest | 2010

Pulmonary Function in Diabetes: A Metaanalysis

Bram van den Borst; Harry R. Gosker; Maurice P. Zeegers; Annemie M. W. J. Schols

BACKGROUND Research into the association between diabetes and pulmonary function has resulted in inconsistent outcomes among studies. We performed a metaanalysis to clarify this association. METHODS From a systematic search of the literature, we included 40 studies describing pulmonary function data of 3,182 patients with diabetes and 27,080 control subjects. Associations were summarized pooling the mean difference (MD) (standard error) between patients with diabetes and control subjects of all studies for key lung function parameters. RESULTS For all studies, the pooled MD for FEV(1), FVC, and diffusion of the lungs for carbon monoxide were -5.1 (95% CI, -6.4 to -3.7; P < .001), -6.3 (95% CI, -8.0 to -4.7; P < .001), and -7.2 (95% CI, -10.0 to -4.4; P < .001) % predicted, respectively, and for FEV(1)/FVC 0.1% (95% CI, -0.8 to 1.0; P = .78). Metaregression analyses showed that between-study heterogeneity was not explained by BMI, smoking, diabetes duration, or glycated hemoglobin (all P > .05). CONCLUSIONS Diabetes is associated with a modest, albeit statistically significant, impaired pulmonary function in a restrictive pattern. Since our results apply to the diabetic subpopulation free from overt pulmonary disease, it would next be interesting to investigate the potential clinical implications in those patients with diabetes who carry a pulmonary diagnosis, such as COPD or asthma.


The FASEB Journal | 2010

TNF-alpha impairs regulation of muscle oxidative phenotype: implications for cachexia?

Alexander Remels; Harry R. Gosker; Patrick Schrauwen; P. P. H. Hommelberg; P. Sliwinski; Michael I. Polkey; J. Galdiz; Emiel F.M. Wouters; Ramon Langen; Annemie M. W. J. Schols

Chronic obstructive pulmonary disease (COPD) is characterized by weight loss, muscle wasting (in advanced disease ultimately resulting in cachexia), and loss of muscle oxidative phenotype (oxphen). This study investigates the effect of inflammation (as a determinant of muscle wasting) on muscle oxphen by using cell studies combined with analyses of muscle biopsies of patients with COPD and control participants. We analyzed markers (citrate synthase, β-hydroxyacyl-CoA dehydrogenase, and cytochrome c oxidase IV) and regulators (PGC-1α, PPAR-α, and Tfam) of oxphen in vastus lateralis muscle biopsies of patients with advanced COPD and healthy smoking control participants. Here 17 of 73 patients exhibited elevated muscle TNF-α mRNA levels. In these patients, significantly lower mRNA levels of all oxidative markers/regulators were found. Interestingly, these patients also had a significantly lower body mass index and tended to have less muscle mass. In cultured muscle cells, mitochondrial protein content and myosin heavy chain isoform I (but not II) protein and mRNA levels were reduced on chronic TNF-α stimulation. TNF-α also reduced mitochondrial respiration in a nuclear factor kappaB (NF-κB) -dependent manner. Importantly, TNF-α-induced NF-κB activation decreased promoter transactivation and transcriptional activity of regulators of mitochondrial biogenesis and muscle oxphen. In conclusion, these results demonstrate that TNF-α impairs muscle oxphen in a NF-κB-dependent manner.

Collaboration


Dive into the Harry R. Gosker's collaboration.

Top Co-Authors

Avatar

Annemie M. W. J. Schols

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emiel F.M. Wouters

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

A. M. W. J. Schols

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge