Harry Sakellaris
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harry Sakellaris.
Infection and Immunity | 2001
Shelley N. Luck; Sally A. Turner; Kumar Rajakumar; Harry Sakellaris; Ben Adler
ABSTRACT Iron uptake systems which are critical for bacterial survival and which may play important roles in bacterial virulence are often carried on mobile elements, such as plasmids and pathogenicity islands (PAIs). In the present study, we identified and characterized a ferric dicitrate uptake system (Fec) in Shigella flexneriserotype 2a that is encoded by a novel PAI termed theShigella resistance locus (SRL) PAI. Thefec genes are transcribed in S. flexneri, and complementation of a fec deletion inEscherichia coli demonstrated that they are functional. However, insertional inactivation of fecI, leading to a loss in fec gene expression, did not impair the growth of the parent strain of S. flexneri in iron-limited culture media, suggesting that S. flexneri carries additional iron uptake systems capable of compensating for the loss of Fec-mediated iron uptake. DNA sequence analysis showed that thefec genes are linked to a cluster of multiple antibiotic resistance determinants, designated the SRL, on the chromosome ofS. flexneri 2a. Both the SRL and fec loci are carried on the 66,257-bp SRL PAI, which has integrated into theserX tRNA gene and which carries at least 22 prophage-related open reading frames, including one for a P4-like integrase. This is the first example of a PAI that carries genes encoding antibiotic resistance and the first report of a ferric dicitrate uptake system in Shigella.
web science | 2000
Keith Al-Hasani; Ian R. Henderson; Harry Sakellaris; Kumar Rajakumar; Travis Grant; James P. Nataro; Roy M. Robins-Browne; Ben Adler
ABSTRACT In this study, the sigA gene situated on theshe pathogenicity island of Shigella flexneri2a was cloned and characterized. Sequence analysis showed thatsigA encodes a 139.6-kDa protein which belongs to the SPATE (serine protease autotransporters of Enterobacteriaceae) subfamily of autotransporter proteins. The demonstration that SigA is autonomously secreted from the cell to yield a 103-kDa processed form and possesses a conserved C-terminal domain for export from the cell were consistent with the autotransporter pathway of secretion. Functional analysis showed that SigA is a secreted temperature-regulated serine protease capable of degrading casein. SigA was cytopathic for HEp-2 cells, suggesting that it may be a cell-altering toxin with a role in the pathogenesis ofShigella infections. SigA was at least partly responsible for the ability of S. flexneri to stimulate fluid accumulation in ligated rabbit ileal loops.
Infection and Immunity | 2000
Harry Sakellaris; Nerissa K Hannink; Kumar Rajakumar; Dieter M. Bulach; Meredith Lesley Hunt; Chihiro Sasakawa; Ben Adler
ABSTRACT An unstable chromosomal element encoding multiple antibiotic resistance in Shigella flexneri serotype 2a was found to include sequences homologous to the csg genes encoding curli in Escherichia coli and Salmonella enterica serovar Typhimurium. As curli have been implicated in the virulence of serovar Typhimurium, we investigated thecsg loci in all four species of Shigella. DNA sequencing and PCR analysis showed that the csg loci of a wide range of Shigella strains, of diverse serotypes and different geographical distributions, were almost universally disrupted by deletions or insertions, indicating the existence of a strong selective pressure against the expression of curli. Strains of enteroinvasive E. coli (EIEC), which share virulence traits with Shigella spp. and cause similar diseases in humans, also possessed insertions or deletions in the csg locus or were otherwise unable to produce curli. Since the production of curli is a widespread trait in environmental isolates of E. coli, our results suggest that genetic lesions that abolish curli production in the closely related genus Shigella and in EIEC are pathoadaptive mutations.
Journal of Biological Chemistry | 2009
Jason J. Paxman; Natalie A. Borg; James Horne; Philip E. Thompson; Yanni Chin; Pooja Sharma; Jamie S. Simpson; Jerome Wielens; Susannah Piek; Charlene M. Kahler; Harry Sakellaris; Mary C. Pearce; Stephen P. Bottomley; Jamie Rossjohn; Martin J. Scanlon
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.
Journal of Bacteriology | 2001
Sally A. Turner; Shelley N. Luck; Harry Sakellaris; Kumar Rajakumar; Ben Adler
In this study, we determined the boundaries of a 99-kb deletable element of Shigella flexneri 2a strain YSH6000. The element, designated the multiple-antibiotic resistance deletable element (MRDE), had recently been found to contain a 66-kb pathogenicity island (PAI)-like element (designated the SRL PAI) which carries the Shigella resistance locus (SRL), encoding resistance determinants to streptomycin, ampicillin, chloramphenicol, and tetracycline. The YSH6000 MRDE was found to be flanked by two identical IS91 elements present at the S. flexneri homologs of the Escherichia coli genes putA and mdoA on NotI fragment D. Sequence data from two YSH6000-derived MRDE deletants, YSH6000T and S2430, revealed that deletion of the MRDE occurred between the two flanking IS91 elements, resulting in a single IS91 element spanning the two original IS91 loci. Selection for the loss of tetracycline resistance confirmed that the MRDE deletion occurred reproducibly from the same chromosomal site and also showed that the SRL PAI and the SRL itself were capable of independent deletion from the chromosome, thus revealing a unique set of nested deletions. The excision frequency of the SRL PAI was estimated to be 10(-5) per cell in the wild type, and mutation of a P4-like integrase gene (int) at the left end of the SRL PAI revealed that int mediates precise deletion of the PAI.
PLOS ONE | 2009
Keith Al-Hasani; Fernando Navarro-Garcia; Jazmin Huerta; Harry Sakellaris; Ben Adler
Background We have previously shown that the enterotoxin SigA which resides on the she pathogenicity island (PAI) of S. flexneri 2a is an autonomously secreted serine protease capable of degrading casein. We have also demonstrated that SigA is cytopathic for HEp-2 cells and plays a role in the intestinal fluid accumulation associated with S. flexneri infections. Methods/Principal Findings In this work we show that SigA binds specifically to HEp-2 cells and degrades recombinant human αII spectrin (α-fodrin) in vitro, suggesting that the cytotoxic and enterotoxic effects mediated by SigA are likely associated with the degradation of epithelial fodrin. Consistent with our data, this study also demonstrates that SigA cleaves intracellular fodrin in situ, causing its redistribution within cells. These results strongly implicate SigA in altering the cytoskeleton during the pathogenesis of shigellosis. On the basis of these findings, cleavage of fodrin is a novel mechanism of cellular intoxication for a Shigella toxin. Furthermore, information regarding immunogenicity to SigA in infected patients is lacking. We studied the immune response of SigA from day 28 post-challenge serum of one volunteer from S. flexneri 2a challenge studies. Our results demonstrate that SigA is immunogenic following infection with S. flexneri 2a. Conclusions This work shows that SigA binds to epithelial HEp-2 cells as well as being able to induce fodrin degradation in vitro and in situ, further extending its documented role in the pathogenesis of Shigella infections.
Advances in Applied Microbiology | 2015
Vipin Thekke Palasseri; Harry Sakellaris
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Antimicrobial Agents and Chemotherapy | 2003
Sally A. Turner; Shelley N. Luck; Harry Sakellaris; Kumar Rajakumar; Ben Adler
ABSTRACT The Shigella resistance locus (SRL), which is carried on the SRL pathogenicity island (PAI) in Shigella flexneri 2a YSH6000, mediates resistance to the antibiotics streptomycin, ampicillin, chloramphenicol, and tetracycline. In the present study, we investigated the distribution and structural variation of the SRL and the SRL PAI in 71 Shigella isolates and 28 other enteric pathogens by PCR and Southern analysis. The SRL and SRL-related loci, although absent from the other enteric pathogens evaluated in this study, were found to be present in a number of Shigella isolates. SRL PAI markers were also present in the majority of strains carrying the SRL and SRL-related loci. PCR linkage studies with six of these strains demonstrated that the SRL is carried on elements similar in structure and organization to the YSH6000 SRL PAI, consistent with the hypothesis that the SRL PAI may be involved in the spread of multiple-antibiotic resistance in these strains.
Journal of Medical Microbiology | 2001
Keith Al-Hasani; Ben Adler; Kumar Rajakumar; Harry Sakellaris
Shigella flexneri serotype 2a carries a chromosomal pathogenicity island (PAI), termed the she PAI, that has been implicated in the pathogenesis of diarrhoeal disease. The complete nucleotide sequence and genetic organisation of the she PAI of S. flexneri 2a strain YSH6000T was determined recently. In the current study the distribution and structure of the she PAI was investigated by PCR and Southern analysis in 65 isolates of enteric pathogens including Shigella spp., enterohaemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Yersinia enterocolitica and Salmonella enterica serovar Typhimurium. The study showed that the she PAI has undergone a variety of structural changes, defined by the presence or absence of specific marker genes in the PAI. The she PAI or structural variants of this element were found in all species of Shigella as well as in EIEC, EHEC and EPEC. No evidence of the PAI was found in Y. enterocolitica or Sal. Typhimurium. The structural form of the she PAI that exists in strain YSH6000T was present in all strains of S. flexneri serotype 2a and in some strains of S. flexneri serotypes 2b and 3c. Variants of the PAI that were missing one or more marker regions were found in all species of Shigella and in pathogenic strains of E. coli. In all strains, the PAIs have inserted into either pheV or a phe tRNA gene in another location on the chromosome. It was concluded that the she PAI is one of several closely related genetic elements that have disseminated throughout Shigella and pathogenic strains of E. coli and diverged into distinct stuctural forms.
Journal of Bacteriology | 2004
Shelley N. Luck; Sally A. Turner; Kumar Rajakumar; Ben Adler; Harry Sakellaris
Pathogenicity islands are capable of excision and insertion within bacterial chromosomes. We describe a protein, Rox, that stimulates excision of the Shigella resistance locus pathogenicity island in Shigella flexneri. Sequence analysis suggests that Rox belongs to a new subfamily of recombination directionality factors, which includes proteins from P4, enterohemorrhagic Escherichia coli, and Yersinia pestis.