Harsha S. Bhat
Institut de Physique du Globe de Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harsha S. Bhat.
Bulletin of the Seismological Society of America | 2004
Harsha S. Bhat; Renata Dmowska; James R. Rice; Nobuki Kame
We analyze the observed dynamic slip transfer from the Denali to Totschunda faults during the Mw 7.9 3 November 2002 Denali fault earthquake, Alaska. This study adopts the theory and methodology of Poliakov et al. (2002) and Kame et al. (2003), in which it was shown that the propensity of the rupture path to follow a fault branch is determined by the preexisting stress state, branch angle, and incoming rupture velocity at the branch location. Here we check that theory on the DenaliTotschunda rupture process using 2D numerical simulations of processes in the vicinity of the branch junction. The maximum compression direction with respect to the strike of the Denali fault near the junction has been estimated to range from approximately 73 to 80. We use the values of 70 and 80 in our numerical simulations. The rupture velocity at branching is not well constrained but has been estimated to average about 0.8 cs throughout the event. We use 0.6 cs, 0.8 cs, 0.9 cs, and even 1.4 cs as parameters in our simulations. We simulate slip transfer by a 2D elastodynamic boundary integral equation model of mode II slip-weakening rupture with self-chosen path along the branched fault system. All our simulations except for 70 and 0.9 cs predict that the rupture path branches off along the Totschunda fault without continuation along the Denali fault. In that exceptional case there is also continuation of rupture along the Denali fault at a speed slower than that along the Totschunda fault and with smaller slip.
Science | 2013
François Xavier Thibault Passelègue; Alexandre Schubnel; S. Nielsen; Harsha S. Bhat; Raul Madariaga
Sonic Boom from Below Seismic shear waves released by an earthquake typically far outpace motion along the fault surface. Occasionally, however, earthquakes along strike-slip faults appear to propagate so that the rupture velocity is faster than shear waves, creating a sort of sonic boom along the fault surface. Passelègue et al. (p. 1208) were able to reproduce and measure these so-called supershear ruptures in stick-slip experiments with two pieces of granite under high applied normal stress. Much like during a sonic boom when a plane travels faster than the speed of sound, the ruptures created a shock wave in the form of a Mach cone around the rupture front. Rupture fronts propagate faster than shear waves following experimental microearthquake nucleation. Supershear earthquake ruptures propagate faster than the shear wave velocity. Although there is evidence that this occurs in nature, it has not been experimentally demonstrated with the use of crustal rocks. We performed stick-slip experiments with Westerly granite under controlled upper-crustal stress conditions. Supershear ruptures systematically occur when the normal stress exceeds 43 megapascals (MPa) with resulting stress drops on the order of 3 to 25 MPa, comparable to the stress drops inferred by seismology for crustal earthquakes. In our experiments, the sub-Rayleigh–to–supershear transition length is a few centimeters at most, suggesting that the rupture of asperities along a fault may propagate locally at supershear velocities. In turn, these sudden accelerations and decelerations could play an important role in the generation of high-frequency radiation and the overall rupture-energy budget.
Journal of Applied Mechanics | 2012
Harsha S. Bhat; Ares J. Rosakis; Charles G. Sammis
The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, “The Damage Mechanics of Brittle Solids in Compression,” Pure Appl. Geophys., 133(3), pp. 489–521, and generalized by Deshpande and Evans 2008, “Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model,” J. Mech. Phys. Solids, 56(10), pp. 3077–3100. has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ~10^(−6) to 10^3s^(−1). Model parameters determined from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.
Geology | 2015
Amaury Vallage; Yann Klinger; R. Grandin; Harsha S. Bhat; M. Pierrot-Deseilligny
Comprehensive quantification of the near-field deformation associated with an earthquake is difficult due to the inherent complexity of surface ruptures. The A.D. 2013 M w 7.7 Balochistan (Pakistan) earthquake, dominated by left-lateral motion with some reverse component, ruptured a 200-km-long section of the Hoshab fault. We characterize the coseismic rupture in detail along its entire length. Optical and radar satellite images are combined to derive the full three-dimensional far-field displacement (115 m pixel size) and the high-resolution 2.5 m pixel horizontal displacement field resulting from the earthquake. We show that the vertical deformation is significant in several locations. The high-resolution near-field horizontal displacement (<1 km around the rupture) reveals inelastic shortening at the fault surface significantly larger than expected from simple elastic modeling. A zone of extension in the hanging wall, as much as 1 km wide, concentrating numerous tensile cracks visible in submeter-scale optical images, compensates for this excess shortening.
Tectonophysics | 2010
Harsha S. Bhat; Ronald L. Biegel; Ares J. Rosakis; Charles G. Sammis
We investigate asymmetric rupture propagation on an interface that combines a bulk elastic mismatch with a contrast in off-fault damage. Mode II ruptures propagating on the interface between thermally shocked (damaged) Homalite and polycarbonate plates were studied using high-speed photographs of the photoelastic fringes. The anelastic asymmetry introduced by damage is defined by ‘T’ and ‘C’ directions depending on whether the tensile or compressive lobe of the rupture tip stress concentration lies on the damaged side of the fault. The elastic asymmetry is commonly defined by ‘+’ and ‘-’ directions where ‘+’ is the direction of slip of the more compliant material. Since damaged Homalite is stiffer than polycarbonate, the propagation directions in our experiments were ‘T+’ and ‘C-’. Theoretical and numerical studies predict that a shear rupture on an elastic bimaterial interfaces propagates in the ‘+’ direction at the generalized Rayleigh wave speed or in some numerical cases at the P-wave speed of the stiffer material, Pfast. We present the first experimental evidence for propagation at Pfast in the ‘+’ direction for the bimaterial system undamaged Homalite in contact with polycarbonate. In the ‘-’ direction, both theory and experiments find ruptures in elastic bimaterials propagate either at sub-shear speed or at the P-wave speed of the softer material, Pslow, depending on the loading conditions. We observe that the off-fault damage effect dominates the elastic bimaterial effect in dynamic rupture propagation. In the ‘C-’ direction the rupture propagates at sub-shear to supershear speeds, as in undamaged bimaterial systems, reaching a maximum speed of Pslow. In the ‘T+’ direction however the rupture propagates at sub-shear speeds or comes to a complete stop due to increased damaged activation (slip and opening along micro-cracks) which results in a reduction in stored elastic potential energy and energy dissipation. Biegel et al. [2008a] found similar results for propagation on the interface between Homalite and damaged Homalite where rupture speeds were slowed or even stopped in the ‘T-’ direction but were almost unaffected in the ‘C+’ direction.
Journal of Geophysical Research | 2016
François Xavier Thibault Passelègue; Alexandre Schubnel; S. Nielsen; Harsha S. Bhat; Damien Deldicque; Raul Madariaga
We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane, is almost total in the breakdown zone (for normal stress > 75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our post-mortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over eight orders of magnitude in slip, from a few microns to tens of meters.
Journal of Geophysical Research | 2009
Elizabeth Land Templeton; Aurélie Baudet; Harsha S. Bhat; Renata Dmowska; James R. Rice; Ares J. Rosakis; Carl-Ernst Rousseau
We analyze the nucleation and propagation of shear cracks along nonplanar, kinked, and branched fault paths corresponding to the configurations used in recent laboratory fracture studies by Rousseau and Rosakis (2003, 2009). The aim is to reproduce numerically those shear rupture experiments and from that provide an insight into processes which are active when a crack, initially propagating in mode II along a straight path, interacts with a bend in the fault or a branching junction. The experiments involved impact loading of thin Homalite-100 (a photoelastic polymer) plates, which had been cut along bent or branched paths and weakly glued back together everywhere except along a starter notch near the impact site. Strain gage recordings and high-speed photography of isochromatic lines provided characterization of the transient deformation fields associated with the impact and fracture propagation. We found that dynamic explicit 2-D plane-stress finite element analyses with a simple linear slip-weakening description of cohesive and frictional strength of the bonded interfaces can reproduce the qualitative rupture behavior past the bend and branch junctions in most cases and reproduce the principal features revealed by the photographs of dynamic isochromatic line patterns. The presence of a kink or branch can cause an abrupt change in rupture propagation velocity. Additionally, the finite element results allow comparison between total slip accumulated along the main and inclined fault segments. We found that slip along inclined faults can be substantially less than slip along the main fault, and the amount depends on the branch angle and kink or branch configuration.
Bulletin of the Seismological Society of America | 2010
Elizabeth Land Templeton; Harsha S. Bhat; Renata Dmowska; James R. Rice
We seek to characterize the likelihood of multiple fault activation along a branched normal-fault system during earthquake rupture using dynamic finite element analyses. This is motivated by the normal faults in the vicinity of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario Canyon fault (SCF), a north-south trending fault located approximately 1 km west of the crest of Yucca Mountain, is the most active of these faults. Based on the results of previous branching work by Kame et al. (2003), branch activation in the hanging wall of a normal fault such as the SCF may be possible for fast ruptures propagating near the Rayleigh-wave speed at the branch junction. Dynamic branch activation along a splay of the SCF during a seismic event could have important effects on the rupture velocity and resulting ground motions at the proposed repository site. We consider elastic as well as a pressure-dependent elastic-plastic response of the off-fault material. We find that based on the regional stress state in the area, the only likely candidates for branch activation in the hanging wall of the SCF are more steeply westward dipping intrablock splay faults. We also find that the rupture velocity for an earthquake propagating updip along the SCF must reach supershear speeds in order for dynamic branch activation to occur. Branch activation can have significant effects on the ground motions at the proposed repository site, 1 km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience a second peak in large vertical particle velocities. Elastic-plastic response near the branch junction reduces peak ground velocities and accelerations at the proposed repository site.
Nature | 2017
Vahe Gabuchian; Ares J. Rosakis; Harsha S. Bhat; Raul Madariaga; Hiroo Kanamori
Many of Earth’s great earthquakes occur on thrust faults. These earthquakes predominantly occur within subduction zones, such as the 2011 moment magnitude 9.0 eathquake in Tohoku-Oki, Japan, or along large collision zones, such as the 1999 moment magnitude 7.7 earthquake in Chi-Chi, Taiwan. Notably, these two earthquakes had a maximum slip that was very close to the surface. This contributed to the destructive tsunami that occurred during the Tohoku-Oki event and to the large amount of structural damage caused by the Chi-Chi event. The mechanism that results in such large slip near the surface is poorly understood as shallow parts of thrust faults are considered to be frictionally stable. Here we use earthquake rupture experiments to reveal the existence of a torquing mechanism of thrust fault ruptures near the free surface that causes them to unclamp and slip large distances. Complementary numerical modelling of the experiments confirms that the hanging-wall wedge undergoes pronounced rotation in one direction as the earthquake rupture approaches the free surface, and this torque is released as soon as the rupture breaks the free surface, resulting in the unclamping and violent ‘flapping’ of the hanging-wall wedge. Our results imply that the shallow extent of the seismogenic zone of a subducting interface is not fixed and can extend up to the trench during great earthquakes through a torquing mechanism.
Geophysical Research Letters | 2018
Pierre Romanet; Harsha S. Bhat; Romain Jolivet; Raul Madariaga
Active faults release elastic strain energy via a whole continuum of modes of slip, ranging from devastating earthquakes to slow slip events (SSEs) and persistent creep. Understanding the mechanisms controlling the occurrence of rapid, dynamic slip radiating seismic waves (i.e., earthquakes) or slow, silent slip (i.e., SSEs) is a fundamental point in the estimation of seismic hazard along subduction zones. Using the numerical implementation of a simple rate-weakening fault model, we show that the simplest of fault geometrical complexities with uniform rate-weakening friction properties give rise to both SSEs and fast earthquakes without appealing to complex rheologies or mechanisms. We argue that the spontaneous occurrence, the characteristics and the scaling relationship of SSEs and earthquakes emerge from geometrical complexities. The geometry of active faults should be considered as a complementary mechanism to current numerical models of SSEs and fast earthquakes.