Harshavardhan Doddapaneni
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harshavardhan Doddapaneni.
Nature Genetics | 2009
Mark Pomerantz; Nasim Ahmadiyeh; Li Jia; Paula Herman; Michael P. Verzi; Harshavardhan Doddapaneni; Christine A. Beckwith; Jennifer A. Chan; Adam Hills; Matthew M. Davis; Keluo Yao; Sarah M. Kehoe; Heinz-Josef Lenz; Christopher A. Haiman; Chunli Yan; Brian E. Henderson; Baruch Frenkel; Jordi Barretina; Adam J. Bass; Josep Tabernero; José Baselga; Meredith M. Regan; J. Robert Manak; Ramesh A. Shivdasani; Gerhard A. Coetzee; Matthew L. Freedman
An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Diego Martinez; Jean F. Challacombe; Ingo Morgenstern; David S. Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Ángel T. Martínez; Phil Kersten; Kenneth E. Hammel; Amber Vanden Wymelenberg; Jill Gaskell; Erika Lindquist; Grzegorz Sabat; Sandra Splinter BonDurant; Luis F. Larrondo; Paulo Canessa; Rafael Vicuña; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; Antonio G. Pisabarro; José L. Lavín; José A. Oguiza; Emma R. Master; Bernard Henrissat; Pedro M. Coutinho; Paul Harris; Jon K. Magnuson
Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
Science | 2012
Dana C. Price; Cheong Xin Chan; Hwan Su Yoon; Eun Chan Yang; Huan Qiu; Andreas P. M. Weber; Rainer Schwacke; Jeferson Gross; Nicolas A. Blouin; Chris E. Lane; Adrian Reyes-Prieto; Dion G. Durnford; Jonathan A.D. Neilson; B. Franz Lang; Gertraud Burger; Jürgen M. Steiner; Wolfgang Löffelhardt; Jonathan E. Meuser; Matthew C. Posewitz; Steven G. Ball; Maria Cecilia Arias; Bernard Henrissat; Pedro M. Coutinho; Stefan A. Rensing; Aikaterini Symeonidi; Harshavardhan Doddapaneni; Beverley R. Green; Veeran D. Rajah; Jeffrey L. Boore; Debashish Bhattacharya
Plastid Origins The glaucophytes, represented by the alga Cyanophora paradoxa, are the putative sister group of red and green algae and plants, which together comprise the founding group of photosynthetic eukaryotes, the Plantae. In their analysis of the genome of C. paradoxa, Price et al. (p. 843; see the Perspective by Spiegel) demonstrate a unique origin for the plastid in the ancestor of this supergroup, which retains much of the ancestral diversity in genes involved in carbohydrate metabolism and fermentation, as well as in the gene content of the mitochondrial genome. Moreover, about 3.3% of nuclear genes in C. paradoxa seem to carry a signal of cyanobacterial ancestry, and key genes involved in starch biosynthesis are derived from energy parasites such as Chlamydiae. Rapid radiation, reticulate evolution via horizontal gene transfer, high rates of gene divergence, loss, and replacement, may have diffused the evolutionary signals within this supergroup, which perhaps explains previous difficulties in resolving its evolutionary history. An ancient algal genome suggests a unique origin of the plastid in the ancestor to plants, algae, and glaucophytes. The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Emmanuelle Morin; Annegret Kohler; Adam R. Baker; Marie Foulongne-Oriol; Vincent Lombard; László G. Nagy; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Annick Brun; Andrea Aerts; Andy M. Bailey; Christophe Billette; Pedro M. Coutinho; Greg Deakin; Harshavardhan Doddapaneni; Dimitrios Floudas; Jane Grimwood; Kristiina Hildén; Ursula Kües; Kurt LaButti; Alla Lapidus; Erika Lindquist; Susan Lucas; Claude Murat; Robert Riley; Asaf Salamov; Jeremy Schmutz; Venkataramanan Subramanian; Han A. B. Wösten; Jianping Xu
Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Elena Fernández-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Timothy Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Ryu Jae San; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; José L. Lavín; José A. Oguiza
Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
PLOS ONE | 2011
Hong Lin; Binghai Lou; Jonathan M. Glynn; Harshavardhan Doddapaneni; Edwin L. Civerolo; Chuanwu Chen; Yongping Duan; Lijuan Zhou; Cheryl M. Vahling
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with ‘Candidatus Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for ‘Ca. L. solanacearum’. Here we present the sequence of the 1.26 Mbp metagenome of ‘Ca. L. solanacearum’, based on DNA isolated from potato psyllids. The coding inventory of the ‘Ca. L. solanacearum’ genome was analyzed and compared to related Rhizobiaceae to better understand ‘Ca. L. solanacearum’ physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, ‘Ca. L. solanacearum’ is related to ‘Ca. L. asiaticus’, a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to ‘Ca. L. asiaticus’, ‘Ca. L. solanacearum’ probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
BMC Genomics | 2005
Harshavardhan Doddapaneni; Ranajit Chakraborty; Jagjit S. Yadav
BackgroundPhanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire (P450ome) containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus.ResultsOur analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2–10 aa) and frequent small introns (45–55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements.ConclusionP. chrysosporium P450ome, the largest known todate among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450 gene diversity has evolved by extensive gene duplications and intragenomic recombinations of the progenitor genes presumably to meet the exceptionally high metabolic demand of this biodegradative group of basidiomycetous fungi in ecological niches. In this context, alternative splicing appears to further contribute to the evolution of functional diversity of the P450ome in this fungus. The evolved P450 diversity is consistent with the known vast biotransformation potential of P. chrysosporium. The presented analysis will help design future P450 functional studies to understand the underlying mechanisms of secondary metabolism and oxidative biotransformation pathways in this model white rot fungus.
Virology | 2012
Giuliana Loconsole; P. Saldarelli; Harshavardhan Doddapaneni; V. Savino; G. P. Martelli; Maria Saponari
In the attempt to identify the causal agent of Citrus chlorotic dwarf disease (CCDD), a virus-like disorder of citrus, the small RNA fraction and total DNA from symptomatic citrus plants were subjected to high-throughput sequencing. DNA fragments deriving from an apparently new geminivirus-like agent were found and assembled by NGS to re-construct the entire viral genome. The newly identified virus has a circular single-stranded DNA genome comprising five open reading frames (ORFs) with sequence homologies with those encoded by geminiviruses. PCR and qPCR assays were successfully used for determining its presence in the CCDD-affected plants obtained by graft propagation. The larger genome size (3.64 vs. 2.5-3.0 kb) and a number of differences in its structural organization, identified this virus as a highly divergent member of the family Geminiviridae, to which the provisional name of Citrus chlorotic dwarf-associated virus (CCDaV) is assigned.
Biochemical and Biophysical Research Communications | 2010
Khajamohiddin Syed; Harshavardhan Doddapaneni; Venkataramanan Subramanian; Ying Wai Lam; Jagjit S. Yadav
Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO(2)) the recalcitrant fused-ring high molecular weight (4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.
Biochemical Society Transactions | 2006
Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian
The model white rot fungus Phanerochaete chrysosporium has the extraordinary ability to degrade (to CO(2)) lignin and detoxify a variety of chemical pollutants. Whole genome sequencing of this fungus has revealed the presence of the largest P450ome in fungi comprising approx. 150 P450 genes, most of which have unknown function. On the basis of our genome-wide structural and evolutionary analysis, these P450 genes could be classified into 12 families and 23 subfamilies and under 11 fungal P450 clans. The analysis further revealed an extensive gene clustering with a total of 16 P450 clusters constituted of up to 11 members per cluster. In particular, evidence and role of gene duplications and horizontal gene transfer in the evolution of these P450 clusters have been discussed using two of the P450 families [CYP63 and CYP505 (where CYP is cytochrome P450)] as examples. In addition, the observed differential transcriptional induction of the clustered members of the CYP63 gene family, in response to different xenobiotic chemicals and carbon sources, indicated functional divergence within the P450 clusters, of this basidiomycete fungus.