Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hartmut Koeppen is active.

Publication


Featured researches published by Hartmut Koeppen.


Journal of Clinical Investigation | 1999

Safety and antitumor activity of recombinant soluble Apo2 ligand

Avi Ashkenazi; Roger Pai; Sharon Fong; Susan Leung; David A. Lawrence; Scot A. Marsters; Christine Blackie; Ling Chang; Amy E. McMurtrey; Andrea Hebert; Laura DeForge; Iphigenia Koumenis; Derf Lewis; Louise Harris; Jeanine Bussiere; Hartmut Koeppen; Zahra Shahrokh; Ralph Schwall

TNF and Fas ligand induce apoptosis in tumor cells; however, their severe toxicity toward normal tissues hampers their application to cancer therapy. Apo2 ligand (Apo2L, or TRAIL) is a related molecule that triggers tumor cell apoptosis. Apo2L mRNA is expressed in many tissues, suggesting that the ligand may be nontoxic to normal cells. To investigate Apo2Ls therapeutic potential, we generated in bacteria a potently active soluble version of the native human protein. Several normal cell types were resistant in vitro to apoptosis induction by Apo2L. Repeated intravenous injections of Apo2L in nonhuman primates did not cause detectable toxicity to tissues and organs examined. Apo2L exerted cytostatic or cytotoxic effects in vitro on 32 of 39 cell lines from colon, lung, breast, kidney, brain, and skin cancer. Treatment of athymic mice with Apo2L shortly after tumor xenograft injection markedly reduced tumor incidence. Apo2L treatment of mice bearing solid tumors induced tumor cell apoptosis, suppressed tumor progression, and improved survival. Apo2L cooperated synergistically with the chemotherapeutic drugs 5-fluorouracil or CPT-11, causing substantial tumor regression or complete tumor ablation. Thus, Apo2L may have potent anticancer activity without significant toxicity toward normal tissues.


Nature | 2014

Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients

Roy S. Herbst; Marcin Kowanetz; Gregg Fine; Omid Hamid; Michael S. Gordon; Jeffery A. Sosman; David F. McDermott; John D. Powderly; Scott N. Gettinger; Holbrook Kohrt; Leora Horn; Donald P. Lawrence; Sandra Rost; Maya Leabman; Yuanyuan Xiao; Ahmad Mokatrin; Hartmut Koeppen; Priti Hegde; Ira Mellman; Daniel S. Chen; F. Stephen Hodi

The development of human cancer is a multistep process characterized by the accumulation of genetic and epigenetic alterations that drive or reflect tumour progression. These changes distinguish cancer cells from their normal counterparts, allowing tumours to be recognized as foreign by the immune system. However, tumours are rarely rejected spontaneously, reflecting their ability to maintain an immunosuppressive microenvironment. Programmed death-ligand 1 (PD-L1; also called B7-H1 or CD274), which is expressed on many cancer and immune cells, plays an important part in blocking the ‘cancer immunity cycle’ by binding programmed death-1 (PD-1) and B7.1 (CD80), both of which are negative regulators of T-lymphocyte activation. Binding of PD-L1 to its receptors suppresses T-cell migration, proliferation and secretion of cytotoxic mediators, and restricts tumour cell killing. The PD-L1–PD-1 axis protects the host from overactive T-effector cells not only in cancer but also during microbial infections. Blocking PD-L1 should therefore enhance anticancer immunity, but little is known about predictive factors of efficacy. This study was designed to evaluate the safety, activity and biomarkers of PD-L1 inhibition using the engineered humanized antibody MPDL3280A. Here we show that across multiple cancer types, responses (as evaluated by Response Evaluation Criteria in Solid Tumours, version 1.1) were observed in patients with tumours expressing high levels of PD-L1, especially when PD-L1 was expressed by tumour-infiltrating immune cells. Furthermore, responses were associated with T-helper type 1 (TH1) gene expression, CTLA4 expression and the absence of fractalkine (CX3CL1) in baseline tumour specimens. Together, these data suggest that MPDL3280A is most effective in patients in which pre-existing immunity is suppressed by PD-L1, and is re-invigorated on antibody treatment.


Nature | 2010

RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth

Georgia Hatzivassiliou; Kyung Song; Ivana Yen; Barbara J. Brandhuber; Daniel J. Anderson; Ryan Alvarado; Mary J. C. Ludlam; David Stokoe; Susan L. Gloor; Guy Vigers; Tony Morales; Ignacio Aliagas; Bonnie Liu; Steve Sideris; Klaus P. Hoeflich; Bijay S. Jaiswal; Somasekar Seshagiri; Hartmut Koeppen; Marcia Belvin; Lori S. Friedman; Shiva Malek

Activating mutations in KRAS and BRAF are found in more than 30% of all human tumours and 40% of melanoma, respectively, thus targeting this pathway could have broad therapeutic effects. Small molecule ATP-competitive RAF kinase inhibitors have potent antitumour effects on mutant BRAF(V600E) tumours but, in contrast to mitogen-activated protein kinase kinase (MEK) inhibitors, are not potent against RAS mutant tumour models, despite RAF functioning as a key effector downstream of RAS and upstream of MEK. Here we show that ATP-competitive RAF inhibitors have two opposing mechanisms of action depending on the cellular context. In BRAF(V600E) tumours, RAF inhibitors effectively block the mitogen-activated protein kinase (MAPK) signalling pathway and decrease tumour growth. Notably, in KRAS mutant and RAS/RAF wild-type tumours, RAF inhibitors activate the RAF–MEK–ERK pathway in a RAS-dependent manner, thus enhancing tumour growth in some xenograft models. Inhibitor binding activates wild-type RAF isoforms by inducing dimerization, membrane localization and interaction with RAS–GTP. These events occur independently of kinase inhibition and are, instead, linked to direct conformational effects of inhibitors on the RAF kinase domain. On the basis of these findings, we demonstrate that ATP-competitive kinase inhibitors can have opposing functions as inhibitors or activators of signalling pathways, depending on the cellular context. Furthermore, this work provides new insights into the therapeutic use of ATP-competitive RAF inhibitors.


Cancer Research | 2008

Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate.

Gail Lewis Phillips; Guangmin Li; Debra L. Dugger; Lisa Crocker; Kathryn Parsons; Elaine Mai; Walter A. Blattler; John M. Lambert; Ravi V. J. Chari; Robert J. Lutz; Wai Lee T. Wong; Frederic S. Jacobson; Hartmut Koeppen; Ralph Schwall; Sara R. Kenkare-Mitra; Susan D. Spencer; Mark X. Sliwkowski

HER2 is a validated target in breast cancer therapy. Two drugs are currently approved for HER2-positive breast cancer: trastuzumab (Herceptin), introduced in 1998, and lapatinib (Tykerb), in 2007. Despite these advances, some patients progress through therapy and succumb to their disease. A variation on antibody-targeted therapy is utilization of antibodies to deliver cytotoxic agents specifically to antigen-expressing tumors. We determined in vitro and in vivo efficacy, pharmacokinetics, and toxicity of trastuzumab-maytansinoid (microtubule-depolymerizing agents) conjugates using disulfide and thioether linkers. Antiproliferative effects of trastuzumab-maytansinoid conjugates were evaluated on cultured normal and tumor cells. In vivo activity was determined in mouse breast cancer models, and toxicity was assessed in rats as measured by body weight loss. Surprisingly, trastuzumab linked to DM1 through a nonreducible thioether linkage (SMCC), displayed superior activity compared with unconjugated trastuzumab or trastuzumab linked to other maytansinoids through disulfide linkers. Serum concentrations of trastuzumab-MCC-DM1 remained elevated compared with other conjugates, and toxicity in rats was negligible compared with free DM1 or trastuzumab linked to DM1 through a reducible linker. Potent activity was observed on all HER2-overexpressing tumor cells, whereas nontransformed cells and tumor cell lines with normal HER2 expression were unaffected. In addition, trastuzumab-DM1 was active on HER2-overexpressing, trastuzumab-refractory tumors. In summary, trastuzumab-DM1 shows greater activity compared with nonconjugated trastuzumab while maintaining selectivity for HER2-overexpressing tumor cells. Because trastuzumab linked to DM1 through a nonreducible linker offers improved efficacy and pharmacokinetics and reduced toxicity over the reducible disulfide linkers evaluated, trastuzumab-MCC-DM1 was selected for clinical development.


Nature | 2012

Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors

Timothy R. Wilson; Jane Fridlyand; Yibing Yan; Elicia Penuel; Luciana Burton; Emily Chan; Jing Peng; Eva Lin; Yulei Wang; Jeffrey A. Sosman; Antoni Ribas; Jiang Li; John Moffat; Daniel P. Sutherlin; Hartmut Koeppen; Mark Merchant; Richard M. Neve; Jeffrey Settleman

Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-‘addicted’ human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.


Nature | 2004

The ubiquitin ligase COP1 is a critical negative regulator of p53

David Dornan; Ingrid E. Wertz; Harumi Shimizu; David Arnott; Gretchen Frantz; Patrick Dowd; Karen O’Rourke; Hartmut Koeppen; Vishva M. Dixit

COP1 (constitutively photomorphogenic 1) is a RING-finger-containing protein that functions to repress plant photomorphogenesis, the light-mediated programme of plant development. Mutants of COP1 are constitutively photomorphogenic, and this has been attributed to their inability to negatively regulate the proteins LAF1 (ref. 1) and HY5 (ref. 2). The role of COP1 in mammalian cells is less well characterized. Here we identify the tumour-suppressor protein p53 as a COP1-interacting protein. COP1 increases p53 turnover by targeting it for degradation by the proteasome in a ubiquitin-dependent fashion, independently of MDM2 or Pirh2, which are known to interact with and negatively regulate p53. Moreover, COP1 serves as an E3 ubiquitin ligase for p53 in vitro and in vivo, and inhibits p53-dependent transcription and apoptosis. Depletion of COP1 by short interfering RNA (siRNA) stabilizes p53 and arrests cells in the G1 phase of the cell cycle. Furthermore, we identify COP1 as a p53-inducible gene, and show that the depletion of COP1 and MDM2 by siRNA cooperatively sensitizes U2-OS cells to ionizing-radiation-induced cell death. Overall, these results indicate that COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells.


Nature | 2012

Recurrent R-spondin fusions in colon cancer

Somasekar Seshagiri; Eric Stawiski; Steffen Durinck; Zora Modrusan; Elaine E. Storm; Caitlin B. Conboy; Subhra Chaudhuri; Yinghui Guan; Vasantharajan Janakiraman; Bijay S. Jaiswal; Joseph Guillory; Connie Ha; Gerrit J. P. Dijkgraaf; Jeremy Stinson; Florian Gnad; Melanie A. Huntley; Jeremiah D. Degenhardt; Peter M. Haverty; Richard Bourgon; Weiru Wang; Hartmut Koeppen; Robert Gentleman; Timothy K. Starr; Zemin Zhang; David A. Largaespada; Thomas D. Wu; Frederic J. de Sauvage

Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.


Journal of Clinical Oncology | 2006

Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer

S. B. Wedam; Jennifer A. Low; Sherry X. Yang; Catherine Chow; Peter L. Choyke; David N. Danforth; Stephen M. Hewitt; Arlene Berman; Seth M. Steinberg; David J. Liewehr; Jonathan Plehn; Arpi Doshi; Dave Thomasson; Nicole McCarthy; Hartmut Koeppen; Mark E. Sherman; JoAnne Zujewski; Kevin Camphausen; Helen Chen; Sandra M. Swain

PURPOSE Vascular endothelial growth factor (VEGF) is a potent molecule that mediates tumor angiogenesis primarily through VEGF receptor 2 (VEGFR2). Bevacizumab, a recombinant humanized monoclonal antibody to VEGF, was administered to previously untreated patients to evaluate parameters of angiogenesis. PATIENTS AND METHODS Twenty-one patients with inflammatory and locally advanced breast cancer were treated with bevacizumab for cycle 1 (15 mg/kg on day 1) followed by six cycles of bevacizumab with doxorubicin (50 mg/m(2)) and docetaxel (75 mg/m(2)) every 3 weeks. After locoregional therapy, patients received eight cycles of bevacizumab alone, and hormonal therapy when indicated. Tumor biopsies and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were obtained at baseline, and after cycles 1, 4, and 7. RESULTS A median decrease of 66.7% in phosphorylated VEGFR2 (Y951) in tumor cells (P = .004) and median increase of 128.9% in tumor apoptosis (P = .0008) were seen after bevacizumab alone. These changes persisted with the addition of chemotherapy. There were no significant changes in microvessel density or VEGF-A expression. On DCE-MRI, parameters reflecting reduced angiogenesis, a median decrease of 34.4% in the inflow transfer rate constant (P = .003), 15.0% in the backflow extravascular- extracellular rate constant (P = .0007) and 14.3% in extravascular-extracellular volume fraction (P = .002) were seen after bevacizumab alone. CONCLUSION Bevacizumab has inhibitory effects on VEGF receptor activation and vascular permeability, and induces apoptosis in tumor cells.


Nature Genetics | 2012

Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer

Charles M. Rudin; Steffen Durinck; Eric Stawiski; John T. Poirier; Zora Modrusan; David S. Shames; Emily Bergbower; Yinghui Guan; James Shin; Joseph Guillory; Celina Sanchez Rivers; Catherine K. Foo; Deepali Bhatt; Jeremy Stinson; Florian Gnad; Peter M. Haverty; Robert Gentleman; Subhra Chaudhuri; Vasantharajan Janakiraman; Bijay S. Jaiswal; Chaitali Parikh; Wenlin Yuan; Zemin Zhang; Hartmut Koeppen; Thomas D. Wu; Howard M. Stern; Robert L. Yauch; Kenneth Huffman; Diego D Paskulin; Peter B. Illei

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein–coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Journal of Clinical Oncology | 2006

Impact of Vascular Endothelial Growth Factor-A Expression, Thrombospondin-2 Expression, and Microvessel Density on the Treatment Effect of Bevacizumab in Metastatic Colorectal Cancer

Adrian M. Jubb; Herbert Hurwitz; Wei Bai; Eric Holmgren; Patti Tobin; A. Steven Guerrero; Fairooz F. Kabbinavar; S. N. Holden; William Novotny; Gretchen Frantz; Kenneth J. Hillan; Hartmut Koeppen

PURPOSE Bevacizumab is a monoclonal antibody to vascular endothelial growth factor-A (VEGF). In the pivotal trial in metastatic colorectal cancer (mCRC), addition of bevacizumab to first-line irinotecan, fluorouracil, and leucovorin (IFL) significantly prolonged median survival. The aim of these retrospective subset analyses was to evaluate VEGF, thrombospondin-2 (THBS-2), and microvessel density (MVD) as prognostic factors and/or predictors of benefit from bevacizumab. PATIENTS AND METHODS In the pivotal trial, 813 patients with untreated mCRC were randomly assigned to receive IFL plus bevacizumab or placebo. Of 312 tissue samples collected (285 primaries, 27 metastases), outcome data were available for 278 (153 bevacizumab, 125 placebo). Epithelial and stromal VEGF expression were assessed by in situ hybridization (ISH) and immunohistochemistry on tissue microarrays and whole sections. Stromal THBS-2 expression was examined by ISH on tissue microarrays. MVD was quantified by Chalkley count. Overall survival was associated with these variables in retrospective subset analyses. RESULTS In all subgroups, estimated hazard ratios (HRs) for risk of death were < 1 for bevacizumab-treated patients regardless of the level of VEGF or THBS-2 expression or MVD. Patients with a high THBS-2 score showed a nonsignificant improvement in survival following bevacizumab treatment (HR = 0.11; 95% CI, 0.02 to 0.51) compared to patients with a low score (HR = 0.65; 95% CI, 0.41 to 1.02); interaction analysis P = .22. VEGF or THBS-2 expression and MVD were not significant prognostic factors. CONCLUSION These exploratory analyses suggest that in patients with mCRC addition of bevacizumab to IFL improves survival regardless of the level of VEGF or THBS-2 expression, or MVD.

Collaboration


Dive into the Hartmut Koeppen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge