Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hartmut Komber is active.

Publication


Featured researches published by Hartmut Komber.


Journal of the American Chemical Society | 2012

On the Role of Single Regiodefects and Polydispersity in Regioregular Poly(3-hexylthiophene): Defect Distribution, Synthesis of Defect-Free Chains, and a Simple Model for the Determination of Crystallinity

Peter Kohn; Sven Huettner; Hartmut Komber; Volodymyr Senkovskyy; Roman Tkachov; Anton Kiriy; Richard H. Friend; Ullrich Steiner; Wilhelm T. S. Huck; Jens-Uwe Sommer; Michael Sommer

Identifying structure formation in semicrystalline conjugated polymers is the fundamental basis to understand electronic processes in these materials. Although correlations between physical properties, structure formation, and device parameters of regioregular, semicrystalline poly(3-hexylthiophene) (P3HT) have been established, it has remained difficult to disentangle the influence of regioregularity, polydispersity, and molecular weight. Here we show that the most commonly used synthetic protocol for the synthesis of P3HT, the living Kumada catalyst transfer polycondensation (KCTP) with Ni(dppp)Cl(2) as the catalyst, leads to regioregular chains with one single tail-to-tail (TT) defect distributed over the whole chain, in contrast to the hitherto assumed exclusive location at the chain end. NMR end-group analysis and simulations are used to quantify this effect. A series of entirely defect-free P3HT materials with different molecular weights is synthesized via new, soluble nickel initiators. Data on structure formation in defect-free P3HT, as elucidated by various calorimetric and scattering experiments, allow the development of a simple model for estimating the degree of crystallinity. We find very good agreement for predicted and experimentally determined degrees of crystallinities as high as ∼70%. For Ni(dppp)Cl(2)-initiated chains comprising one distributed TT unit, the comparison of simulated crystallinities with calorimetric and optical measurements strongly suggests incorporation of the TT unit into the crystal lattice, which is accompanied by an increase in backbone torsion. Polydispersity is identified as a major parameter determining crystallinity within the molecular weight range investigated. We believe that the presented approach and results not only contribute to understanding structure formation in P3HT but are generally applicable to other semicrystalline conjugated polymers as well.


Journal of the American Chemical Society | 2009

“Hairy” Poly(3-hexylthiophene) Particles Prepared via Surface-Initiated Kumada Catalyst-Transfer Polycondensation

Volodymyr Senkovskyy; Roman Tkachov; Tetyana Beryozkina; Hartmut Komber; Ulrich Oertel; Marta Horecha; Vera Bocharova; Manfred Stamm; Suren A. Gevorgyan; Frederik C. Krebs; Anton Kiriy

Herein, we present a new paradigm in the engineering of nanostructured hybrids between conjugated polymer and inorganic materials via a chain-growth surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from particles. Poly(3-hexylthiophene), P3HT, a benchmark material for organic electronics, was selectively grown by SI-KCTP from (nano)particles bearing surface-immobilized Ni catalysts supported by bidentate phosphorus ligands, that resulted in hairy (nano)particles with end-tethered P3HT chains. Densely grafted P3HT chains exhibit strongly altered optical properties compared to the untethered counterparts (red shift and vibronic fine structure in absorption and fluorescence spectra), as a result of efficient planarization and chain-aggregation. These effects are observed in solvents that are normally recognized as good solvents for P3HT (e.g., tetrahydrofurane). We attribute this to strong interchain interactions within densely grafted P3HT chains, which can be tuned by changing the surface curvature (or size) of the supporting particle. The hairy P3HT nanoparticles were successfully applied in bulk heterojunction solar cells.


Biomacromolecules | 2009

Hyperbranched PEI with Various Oligosaccharide Architectures : Synthesis, Characterization, ATP Complexation, and Cellular Uptake Properties

Dietmar Appelhans; Hartmut Komber; Mohiuddin A. Quadir; Sven Richter; Simona Schwarz; Jereon van der Vlist; Achim Aigner; Martin Mueller; Katja Loos; Juergen Seidel; Karl-Friedrich Arndt; Rainer Haag; Brigitte Voit; Martin Müller; Jürgen Seidel

We present a rapid synthetic method for the development of hyperbranched PEIs decorated with different oligosaccharide architectures as carrier systems (CS) for drugs and bioactive molecules for in vitro and in vivo experiments. Reductive amination of hyperbranched PEI with readily available oligosaccharides results in sugar functionalized PEI cores with oligosaccharide shells of different densities. These core-shell architectures were characterized by NMR spectroscopy, elemental analysis, SLS, DLS, IR, and polyelectrolyte titration experiments. ATP complexation of theses polycations was examined by isothermal titration calorimetry to evaluate the binding energy and ATP/CS complexation ratios under physiological conditions. In vitro experiments showed an enhanced cellular uptake of ATP/CS complexes compared to those of the free ATP molecules. The results arise to initiate further noncovalent complexation studies of pharmacologically relevant molecules that may lead to the development of therapeutics based on this polymeric delivery platform.


Journal of the American Chemical Society | 2015

Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation.

Rukiya Matsidik; Hartmut Komber; Alessandro Luzio; Mario Caironi; Michael Sommer

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C-H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C-H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities μsat up to 3 cm(2)/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.


Journal of the American Chemical Society | 2011

Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: a new route to well-defined n-type conjugated copolymers.

Volodymyr Senkovskyy; Roman Tkachov; Hartmut Komber; Michael Sommer; Maria Heuken; Brigitte Voit; Wilhelm T. S. Huck; V. Kataev; Andreas Petr; Anton Kiriy

Strongly electron-deficient (n-type) main-chain π-conjugated polymers are commonly prepared via well-established step-growth polycondensation protocols which enable limited control over polymerization. Here we demonstrate that activated Zn and electron-deficient brominated thiophene-naphthalene diimide oligomers form anion-radical complexes instead of conventional Zn-organic derivatives. These highly unusual zinc complexes undergo Ni-catalyzed chain-growth polymerization leading to n-type conjugated polymers with controlled molecular weight, relatively narrow polydispersities, and specific end-functions.


Chemistry: A European Journal | 2008

The Influence of Densely Organized Maltose Shells on the Biological Properties of Poly(propylene imine) Dendrimers: New Effects Dependent on Hydrogen Bonding

Barbara Klajnert; Dietmar Appelhans; Hartmut Komber; Nina Morgner; Simona Schwarz; Sven Richter; Bernhard Brutschy; Maksim Ionov; Anatoly K. Tonkikh; Maria Bryszewska; Brigitte Voit

Maltose-modified poly(propylene imine) (PPI) dendrimers were synthesized by reductive amination of unmodified second- to fifth-generation PPI dendrimers in the presence of excess maltose. The dendrimers were characterized by using (1)H NMR, (13)C NMR, and IR spectroscopies; laser-induced liquid beam ionization/desorption mass spectrometry; dynamic light scattering analyses; and polyelectrolyte titration. Their scaffolds have enhanced molecular rigidity and their outer spheres, at which two maltose units are bonded to the former primary amino groups on the surface, have hydrogen-bond-forming properties. Furthermore, the structural features reveal the presence of a dense shell. Experiments involving encapsulation (1-anilinonaphthalene-8-sulfonic acid) and biological properties (hemolysis and interactions with human serum albumin (HSA) and prion peptide 185-208) were performed to compare the modified with the unmodified dendrimers. These experiments gave the following results: 1) The modified dendrimers entrapped a low-molecular-weight fluorescent dye by means of a dendritic box effect, in contrast to the interfacial uptake characteristic of the unmodified PPI dendrimers. 2) Both low- and high-generation dendrimers containing maltose units showed markedly reduced toxicity. 3) The desirable features of bio-interactions depended on the generation of the dendrimer; they were retained after maltose substitution, but were now mainly governed by nonspecific hydrogen-bonding interactions involving the maltose units. The modified dendrimers interacted with HSA as strongly as the parent compounds and appeared to have potential use as antiprion agents. These improvements will initiate the development of the next platform of glycodendrimers in which apparently contrary properties can be combined, and this will enable, for example, therapeutic products such as more efficient and less toxic antiamyloid agents to be synthesized.


Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2010

Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation

Dietmar Appelhans; Ulrich Oertel; Roberto Mazzeo; Hartmut Komber; Jan Hoffmann; Steffen Weidner; Bernhard Brutschy; Brigitte Voit; Maria FrancescaOttaviani

The development of dendritic metal ion carrier systems for use in a biological environment is a challenging task as the carrier system must possess multiple features (e.g. a protective shell for metal decomplexation, targeting functions, metal–intradendrimer complexes, etc.) to substitute for the function of metal proteins in processes such as copper metabolism. Thus, Cu(II) complexation by a series of poly(propyleneimine) glycodendrimers ranging up to the fifth generation that have either a dense maltose or maltotriose shell was investigated by UV/Vis spectroscopy and electron paramagnetic resonance (EPR). As a necessary step towards potential biological application, we elucidated the complexation capacity, location of the Cu(II)–dendrimer complexes and the Cu(II) coordination sphere in the dendritic environment. A generation-dependent Cu(II) complexation was found. Furthermore, analysis of the EPR spectra revealed that internal and external Cu(II) coordination and the symmetry (axial and rhombic) of the generated complexes depend on the oligosaccharide shell, dendrimer generation and the relative concentrations of Cu(II) and the dendrimers. Both axial and rhombic symmetries are generation dependent, but also distort with increasing generation number. External coordination of Cu(II) is supported by sugar groups and water molecules. Finally, a third-generation dendrimer with a maltose shell was used to explore the general complexation behaviour of the dendritic poly(propyleneimine) scaffold towards different metal ions [Cu(II), Ag(I), VO(IV), Ni(II), Eu(III) and UO2(VI)].


Macromolecular Chemistry and Physics | 1999

Synthesis of functional polymers by atom transfer radical polymerization

Hauke Malz; Hartmut Komber; Dieter Voigt; I. Hopfe; Jürgen Pionteck

The preparation of monochelic polystyrene by atom transfer radical polymerization (ATRP) was investigated. The polymer analogous pathway by substitution of the bromide by an alcoholate resulted in significant elimination of the bromide and the degree of functionalization was low. Better results were achieved by the use of functional initiators. Carboxylic acid- and anhydride-bearing initiators were prepared by bromination of the commercially available 4-ethylbenzoic acid and the 4-methylphthalic anhydride, respectively. With these two products monochelic polystyrenes were synthesized. Further modification of the 4-(1-bromoethyl)benzoic acid led to initiators with a hydroxy or an oxazoline moiety. Again, the respective functional polystyrenes were obtained.


Journal of Polymer Science Part A | 1998

Synthesis and properties of polyamidines

Frank Böhme; C. Klinger; Hartmut Komber; Liane Häußler; Dieter Jehnichen

Polymers with amidine groups NHCRN in the main chain were prepared by acid catalysed melt polycondensation of 4,4′-diaminodiphenyl methane (DAPM) with various orthoesters. The resulting polyamidines were characterized by 1H-, 13C- and 15N-NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TGA) and wide angle x-ray scattering (WAXS) measurements. The properties of the polyamidines are strongly determined by the substituent R on the amidine group. Some peculiarities of the polyformamidine (RH) could be attributed to the conformation of the amidine group. Glass transition temperatures varied from 106 to 161°C depending on the substituent R. All polyamidines possessed good thermal stability up to 370°C and, with exception of the polyformamidine, good solubility in common solvents.


Macromolecular Chemistry and Physics | 1999

New hyperbranched poly(ether amide)s via nucleophilic ring opening of 2-oxazoline-containing monomers

Thomas Huber; Frank Böhme; Hartmut Komber; Juraj Kronek; Josef Luston; Dieter Voigt; Brigitte Voit

An AB 2 monomer containing one oxazoline and two phenolic units was synthesized. The polymerization of the monomer 2-(3,5-dihydroxyphenyl)-1,3-oxazoline in N-methylcaprolactam resulted in a well-defined and fully soluble, high molar mass, hyperbranched polymer with etheramide structure. The hydrolysis of some oxazoline groups as side reaction limits the achieved molar mass when the polymerization is carried out in tetramethylene sulfone or in bulk. The polymers were characterized by one (1D) and two (2D) dimensional 1 H and 13 C NMR spectroscopy which allowed to determine the degree of branching to be 50% as expected from statistics. DSC and TGA measurements revealed a glass transition temperature of 176°C and a decomposition onset of 330°C. The thermal ring-opening reaction was studied in situ by DSC measurements.

Collaboration


Dive into the Hartmut Komber's collaboration.

Top Co-Authors

Avatar

Brigitte Voit

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Sommer

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanta Banerjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge